Advanced Data Analytics Using Python
Download Advanced Data Analytics Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Data Analytics Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Advanced Data Analytics Using Python
Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You’ll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis. After reading this book you will have experience of every technical aspect of an analytics project. You’ll get to know the concepts using Python code, giving you samples to use in your own projects. What You Will Learn Work with data analysis techniques such as classification, clustering, regression, and forecasting Handle structured and unstructured data, ETL techniques, and different kinds of databases such as Neo4j, Elasticsearch, MongoDB, and MySQL Examine the different big data frameworks, including Hadoop and Spark Discover advanced machine learning concepts such as semi-supervised learning, deep learning, and NLP Who This Book Is For Data scientists and software developers interested in the field of data analytics.
Advanced Data Analytics Using Python
Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment. Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning. Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application. What You'll Learn Build intelligent systems for enterprise Review time series analysis, classifications, regression, and clustering Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning Use cloud platforms like GCP and AWS in data analytics Understand Covers design patterns in Python Who This Book Is For Data scientists and software developers interested in the field of data analytics.
Data Analytics using Machine Learning Techniques on Cloud Platforms
Data Analytics using Machine Learning Techniques on Cloud Platforms examines how machine learning (ML) and cloud computing combine to drive data-driven decision-making across industries. Covering ML techniques, loud-based analytics tools and security concerns, this book provides theoretical foundations and real-world applications in fields like healthcare, logistics and e-commerce. It also addresses security challenges, privacy concerns and compliance frameworks, ensuring a comprehensive understanding of cloud-based analytics. This book: Covers supervised and unsupervised learning, including regression, clustering, classification and neural networks Discusses Hadoop, Spark, Tableau, Power BI and Splunk for analytics and visualization Examines how cloud computing enhances scalability, efficiency and automation in data analytics Showcases ML-driven solutions in e-commerce, supply chain logistics, healthcare and education This book is an essential resource for students, researchers and professionals who seek to understand and apply ML-driven cloud analytics in real-world scenarios.