Ai Learning
Download Ai Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ai Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
AI Crash Course
This friendly and accessible guide to AI theory and programming in Python requires no maths or data science background. Key Features Roll up your sleeves and start programming AI models No math, data science, or machine learning background required Packed with hands-on examples, illustrations, and clear step-by-step instructions 5 hands-on working projects put ideas into action and show step-by-step how to build intelligent software Book Description AI is changing the world - and with this book, anyone can start building intelligent software! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Taking a graduated approach that starts with the basics before easing readers into more complicated formulas and notation, Hadelin helps you understand what you really need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming: Google Colab Python TensorFlow Keras PyTorch AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learn Master the key skills of deep learning, reinforcement learning, and deep reinforcement learning Understand Q-learning and deep Q-learning Learn from friendly, plain English explanations and practical activities Build fun projects, including a virtual-self-driving car Use AI to solve real-world business problems and win classic video games Build an intelligent, virtual robot warehouse worker Who this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).
Artificial Intelligence and Machine Learning Techniques for Civil Engineering
In recent years, artificial intelligence (AI) has drawn significant attention with respect to its applications in several scientific fields, varying from big data handling to medical diagnosis. A tremendous transformation has taken place with the emerging application of AI. AI can provide a wide range of solutions to address many challenges in civil engineering. Artificial Intelligence and Machine Learning Techniques for Civil Engineering highlights the latest technologies and applications of AI in structural engineering, transportation engineering, geotechnical engineering, and more. It features a collection of innovative research on the methods and implementation of AI and machine learning in multiple facets of civil engineering. Covering topics such as damage inspection, safety risk management, and information modeling, this premier reference source is an essential resource for engineers, government officials, business leaders and executives, construction managers, students and faculty of higher education, librarians, researchers, and academicians.
Machine Learning
Machine Learning: Concepts, Techniques and Applications starts at basic conceptual level of explaining machine learning and goes on to explain the basis of machine learning algorithms. The mathematical foundations required are outlined along with their associations to machine learning. The book then goes on to describe important machine learning algorithms along with appropriate use cases. This approach enables the readers to explore the applicability of each algorithm by understanding the differences between them. A comprehensive account of various aspects of ethical machine learning has been discussed. An outline of deep learning models is also included. The use cases, self-assessments, exercises, activities, numerical problems, and projects associated with each chapter aims to concretize the understanding. Features Concepts of Machine learning from basics to algorithms to implementation Comparison of Different Machine Learning Algorithms – When to use them & Why – for Application developers and Researchers Machine Learning from an Application Perspective – General & Machine learning for Healthcare, Education, Business, Engineering Applications Ethics of machine learning including Bias, Fairness, Trust, Responsibility Basics of Deep learning, important deep learning models and applications Plenty of objective questions, Use Cases, Activity and Project based Learning Exercises The book aims to make the thinking of applications and problems in terms of machine learning possible for graduate students, researchers and professionals so that they can formulate the problems, prepare data, decide features, select appropriate machine learning algorithms and do appropriate performance evaluation.