Algorithms For Computer Algebra


Algorithms For Computer Algebra pdf

Download Algorithms For Computer Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithms For Computer Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Algorithms for Computer Algebra


Algorithms for Computer Algebra

Author: Keith O. Geddes

language: en

Publisher: Springer Science & Business Media

Release Date: 1992-09-30


DOWNLOAD





Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.

Polynomial Algorithms in Computer Algebra


Polynomial Algorithms in Computer Algebra

Author: Franz Winkler

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





For several years now I have been teaching courses in computer algebra at the Universitat Linz, the University of Delaware, and the Universidad de Alcala de Henares. In the summers of 1990 and 1992 I have organized and taught summer schools in computer algebra at the Universitat Linz. Gradually a set of course notes has emerged from these activities. People have asked me for copies of the course notes, and different versions of them have been circulating for a few years. Finally I decided that I should really take the time to write the material up in a coherent way and make a book out of it. Here, now, is the result of this work. Over the years many students have been helpful in improving the quality of the notes, and also several colleagues at Linz and elsewhere have contributed to it. I want to thank them all for their effort, in particular I want to thank B. Buchberger, who taught me the theory of Grabner bases nearly two decades ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in various problems in computer algebra, G. E. Collins, who showed me how to compute in algebraic domains, and J. R. Sendra, with whom I started to apply computer algebra methods to problems in algebraic geometry. Several colleagues have suggested improvements in earlier versions of this book. However, I want to make it clear that I am responsible for all remaining mistakes.

Some Tapas of Computer Algebra


Some Tapas of Computer Algebra

Author: Arjeh M. Cohen

language: en

Publisher: Springer Science & Business Media

Release Date: 1998-12-15


DOWNLOAD





This book presents the basic concepts and algorithms of computer algebra using practical examples that illustrate their actual use in symbolic computation. A wide range of topics are presented, including: Groebner bases, real algebraic geometry, lie algebras, factorization of polynomials, integer programming, permutation groups, differential equations, coding theory, automatic theorem proving, and polyhedral geometry. This book is a must read for anyone working in the area of computer algebra, symbolic computation, and computer science.