Cloud Computing 2016
Download Cloud Computing 2016 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cloud Computing 2016 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Cloud Computing for Geospatial Big Data Analytics
This book introduces the latest research findings in cloud, edge, fog, and mist computing and their applications in various fields using geospatial data. It solves a number of problems of cloud computing and big data, such as scheduling, security issues using different techniques, which researchers from industry and academia have been attempting to solve in virtual environments. Some of these problems are of an intractable nature and so efficient technologies like fog, edge and mist computing play an important role in addressing these issues. By exploring emerging advances in cloud computing and big data analytics and their engineering applications, the book enables researchers to understand the mechanisms needed to implement cloud, edge, fog, and mist computing in their own endeavours, and motivates them to examine their own research findings and developments.
Cognitive Big Data Intelligence with a Metaheuristic Approach
Cognitive Big Data Intelligence with a Metaheuristic Approach presents an exact and compact organization of content relating to the latest metaheuristics methodologies based on new challenging big data application domains and cognitive computing. The combined model of cognitive big data intelligence with metaheuristics methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues in real-time. Various real-time case studies and implemented works are discussed in this book for better understanding and additional clarity. This book presents an essential platform for the use of cognitive technology in the field of Data Science. It covers metaheuristic methodologies that can be successful in a wide variety of problem settings in big data frameworks. - Provides a unique opportunity to present the work on the state-of-the-art of metaheuristics approach in the area of big data processing developing automated and intelligent models - Explains different, feasible applications and case studies where cognitive computing can be successfully implemented in big data analytics using metaheuristics algorithms - Provides a snapshot of the latest advances in the contribution of metaheuristics frameworks in cognitive big data applications to solve optimization problems