Compact Quantum Groups And Their Representation Categories


Compact Quantum Groups And Their Representation Categories pdf

Download Compact Quantum Groups And Their Representation Categories PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Compact Quantum Groups And Their Representation Categories book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Compact Quantum Groups and Their Representation Categories


Compact Quantum Groups and Their Representation Categories

Author: Sergey Neshveyev

language: en

Publisher: SMF

Release Date: 2013


DOWNLOAD





The book provides an introduction to the theory of compact quantum groups, emphasizing the role of the categorical point of view in constructing and analyzing concrete examples. The general theory is developed in the first two chapters and is illustrated with a detailed analysis of free orthogonal quantum groups and the Drinfeld-Jimbo $q$-deformations of compact semisimple Lie groups. The next two chapters are more specialized and concentrate on the Drinfeld-Kohno theorem, presented from the operator algebraic point of view. This book should be accessible to students with a basic knowledge of operator algebras and semisimple Lie groups.

Analysis and Quantum Groups


Analysis and Quantum Groups

Author: Lars Tuset

language: en

Publisher: Springer Nature

Release Date: 2022-07-27


DOWNLOAD





This volume presents a completely self-contained introduction to the elaborate theory of locally compact quantum groups, bringing the reader to the frontiers of present-day research. The exposition includes a substantial amount of material on functional analysis and operator algebras, subjects which in themselves have become increasingly important with the advent of quantum information theory. In particular, the rather unfamiliar modular theory of weights plays a crucial role in the theory, due to the presence of ‘Haar integrals’ on locally compact quantum groups, and is thus treated quite extensively The topics covered are developed independently, and each can serve either as a separate course in its own right or as part of a broader course on locally compact quantum groups. The second part of the book covers crossed products of coactions, their relation to subfactors and other types of natural products such as cocycle bicrossed products, quantum doubles and doublecrossed products. Induced corepresentations, Galois objects and deformations of coactions by cocycles are also treated. Each section is followed by a generous supply of exercises. To complete the book, an appendix is provided on topology, measure theory and complex function theory.

Complex Semisimple Quantum Groups and Representation Theory


Complex Semisimple Quantum Groups and Representation Theory

Author: Christian Voigt

language: en

Publisher: Springer Nature

Release Date: 2020-09-24


DOWNLOAD





This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group. The main components are: - a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism, - the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals, - algebraic representation theory in terms of category O, and - analytic representation theory of quantized complex semisimple groups. Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.