Computational Stochastic Programming
Download Computational Stochastic Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Stochastic Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Stochastic Programming
This book provides a foundation in stochastic, linear, and mixed-integer programming algorithms with a focus on practical computer algorithm implementation. The purpose of this book is to provide a foundational and thorough treatment of the subject with a focus on models and algorithms and their computer implementation. The book’s most important features include a focus on both risk-neutral and risk-averse models, a variety of real-life example applications of stochastic programming, decomposition algorithms, detailed illustrative numerical examples of the models and algorithms, and an emphasis on computational experimentation. With a focus on both theory and implementation of the models and algorithms for solving practical optimization problems, this monograph is suitable for readers with fundamental knowledge of linear programming, elementary analysis, probability and statistics, and some computer programming background. Several examples of stochastic programming applications are included, providing numerical examples to illustrate the models and algorithms for both stochastic linear and mixed-integer programming, and showing the reader how to implement the models and algorithms using computer software.
Stochastic Linear Programming
Author: Peter Kall
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-07-25
Peter Kall and János Mayer are distinguished scholars and professors of Operations Research and their research interest is particularly devoted to the area of stochastic optimization. Stochastic Linear Programming: Models, Theory, and Computation is a definitive presentation and discussion of the theoretical properties of the models, the conceptual algorithmic approaches, and the computational issues relating to the implementation of these methods to solve problems that are stochastic in nature. The application area of stochastic programming includes portfolio analysis, financial optimization, energy problems, random yields in manufacturing, risk analysis, etc. In this book, models in financial optimization and risk analysis are discussed as examples, including solution methods and their implementation. Stochastic programming is a fast developing area of optimization and mathematical programming. Numerous papers and conference volumes, and several monographs have been published in the area; however, the Kall and Mayer book will be particularly useful in presenting solution methods including their solid theoretical basis and their computational issues, based in many cases on implementations by the authors. The book is also suitable for advanced courses in stochastic optimization.
Applications of Stochastic Programming
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.