Data Analytics


Data Analytics pdf

Download Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Analytics and Big Data


Data Analytics and Big Data

Author: Soraya Sedkaoui

language: en

Publisher: John Wiley & Sons

Release Date: 2018-07-31


DOWNLOAD





The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.

Data Analytics


Data Analytics

Author: Byron Francis

language: en

Publisher: Createspace Independent Publishing Platform

Release Date: 2016-09-12


DOWNLOAD





Data Analytics - The Complete Beginner's Guide! The book is an unstructured data mining quest, which takes the reader through different features of unstructured data mining while unfolding the practical facets of Big Data. It emphasizes more on machine learning and mining methods required for processing and decision-making. The text begins with the introduction to the subject and explores the concept of data mining methods and models along with the applications. It then goes into detail on other aspects of Big Data analytics, such as clustering, incremental learning, multi-label association and knowledge representation. The readers are also made familiar with business analytics to create value. The book finally ends with a discussion on the areas where research can be explored. The book is designed for the senior level undergraduate, and postgraduate students of computer science and engineering. Here Is A Preview Of What Inside The Book: Big data Statistics in practice Descriptive and Inferential Statistics Parameters and Statistics Statistical data analysis Variables SUMMARY OF THE GENERAL METHOD OF DECISION ANALYSIS ANOTHER DECISION TREE MODEL AND ITS ANALYSIS Making Data Work for You Predictive Modeling Techniques Take Action Today and Data Analytics in no time! Click the "Buy now with 1-Click" to the right and get this guide immediately.

Practical Big Data Analytics


Practical Big Data Analytics

Author: Nataraj Dasgupta

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-01-15


DOWNLOAD





Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.