Data Management
Download Data Management PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Management book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Management: a gentle introduction
The overall objective of this book is to show that data management is an exciting and valuable capability that is worth time and effort. More specifically it aims to achieve the following goals: 1. To give a “gentle” introduction to the field of DM by explaining and illustrating its core concepts, based on a mix of theory, practical frameworks such as TOGAF, ArchiMate, and DMBOK, as well as results from real-world assignments. 2. To offer guidance on how to build an effective DM capability in an organization.This is illustrated by various use cases, linked to the previously mentioned theoretical exploration as well as the stories of practitioners in the field. The primary target groups are: busy professionals who “are actively involved with managing data”. The book is also aimed at (Bachelor’s/ Master’s) students with an interest in data management. The book is industry-agnostic and should be applicable in different industries such as government, finance, telecommunications etc. Typical roles for which this book is intended: data governance office/ council, data owners, data stewards, people involved with data governance (data governance board), enterprise architects, data architects, process managers, business analysts and IT analysts. The book is divided into three main parts: theory, practice, and closing remarks. Furthermore, the chapters are as short and to the point as possible and also make a clear distinction between the main text and the examples. If the reader is already familiar with the topic of a chapter, he/she can easily skip it and move on to the next.
Data Management and Data Description
Published in 1992. The author sets out the main issues in Data Management, from the first principles of meta modelling and data description through the comprehensive management exploitation, re-use, valuation, extension and enhancement of data as a valuable organizational resource. Using his recent in-depth experience of a major trans-European project, he highlights data value metrics and provides examples of extended data analysis to assist readers to produce corporate data architectures. The book considers how the techniques of data management can be applied in the wider community of business, institutional and organizational settings and considers how new types of data (from the EDIFACT world) can be integrated into the existing data management environments of large data processing functions. This wide-ranging text considers existing work in the field of data resource management and extends the concepts of data resource valuation. References are made to new aspects of metrics for data value and how they can be applied. It will interest strategic business planners, information systems, and DP managers and executives, data-management personnel and data analysts, and academics involved in MSc and BSc courses on Dara Analysis, CASE repositories and structured methods.
Master Data Management
The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to "master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure