Data Mining And Knowledge Management


Data Mining And Knowledge Management pdf

Download Data Mining And Knowledge Management PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining And Knowledge Management book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Mining and Knowledge Management


Data Mining and Knowledge Management

Author: Yong Shi

language: en

Publisher: Springer

Release Date: 2005-01-18


DOWNLOAD





criteria linear and nonlinear programming has proven to be a very useful approach. • Knowledge management for enterprise: These papers address various issues related to the application of knowledge management in corporations using various techniques. A particular emphasis here is on coordination and cooperation. • Risk management: Better knowledge management also requires more advanced techniques for risk management, to identify, control, and minimize the impact of uncertain events, as shown in these papers, using fuzzy set theory and other approaches for better risk management. • Integration of data mining and knowledge management: As indicated earlier, the integration of these two research fields is still in the early stage. Nevertheless, as shown in the papers selected in this volume, researchers have endearored to integrate data mining methods such as neural networks with various aspects related to knowledge management, such as decision support systems and expert systems, for better knowledge management. September 2004 Yong Shi Weixuan Xu Zhengxin Chen CASDMKM 2004 Organization Hosted by Institute of Policy and Management at the Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences International Journal of Information Technology and Decision Making Sponsored by Chinese Academy of Sciences National Natural Science Foundation of China University of Nebraska at Omaha, USA Conference Chairs Weixuan Xu, Chinese Academy of Sciences, China Yong Shi, University of Nebraska at Omaha, USA Advisory Committee

Data Mining and Medical Knowledge Management: Cases and Applications


Data Mining and Medical Knowledge Management: Cases and Applications

Author: Berka, Petr

language: en

Publisher: IGI Global

Release Date: 2009-02-28


DOWNLOAD





The healthcare industry produces a constant flow of data, creating a need for deep analysis of databases through data mining tools and techniques resulting in expanded medical research, diagnosis, and treatment. Data Mining and Medical Knowledge Management: Cases and Applications presents case studies on applications of various modern data mining methods in several important areas of medicine, covering classical data mining methods, elaborated approaches related to mining in electroencephalogram and electrocardiogram data, and methods related to mining in genetic data. A premier resource for those involved in data mining and medical knowledge management, this book tackles ethical issues related to cost-sensitive learning in medicine and produces theoretical contributions concerning general problems of data, information, knowledge, and ontologies.

Intelligent Knowledge


Intelligent Knowledge

Author: Yong Shi

language: en

Publisher: Springer

Release Date: 2015-05-08


DOWNLOAD





This book is mainly about an innovative and fundamental method called “intelligent knowledge” to bridge the gap between data mining and knowledge management, two important fields recognized by the information technology (IT) community and business analytics (BA) community respectively. The book includes definitions of the “first-order” analytic process, “second-order” analytic process and intelligent knowledge, which have not formally been addressed by either data mining or knowledge management. Based on these concepts, which are especially important in connection with the current Big Data movement, the book describes a framework of domain-driven intelligent knowledge discovery. To illustrate its technical advantages for large-scale data, the book employs established approaches, such as Multiple Criteria Programming, Support Vector Machine and Decision Tree to identify intelligent knowledge incorporated with human knowledge. The book further shows its applicability by means of real-life data analyses in the contexts of internet business and traditional Chinese medicines.