Data Mining With Python Quick Start Guide
Download Data Mining With Python Quick Start Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining With Python Quick Start Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Python Data Mining Quick Start Guide
Author: Nathan Greeneltch
language: en
Publisher: Packt Publishing Ltd
Release Date: 2019-04-25
Explore the different data mining techniques using the libraries and packages offered by Python Key FeaturesGrasp the basics of data loading, cleaning, analysis, and visualizationUse the popular Python libraries such as NumPy, pandas, matplotlib, and scikit-learn for data miningYour one-stop guide to build efficient data mining pipelines without going into too much theoryBook Description Data mining is a necessary and predictable response to the dawn of the information age. It is typically defined as the pattern and/ or trend discovery phase in the data mining pipeline, and Python is a popular tool for performing these tasks as it offers a wide variety of tools for data mining. This book will serve as a quick introduction to the concept of data mining and putting it to practical use with the help of popular Python packages and libraries. You will get a hands-on demonstration of working with different real-world datasets and extracting useful insights from them using popular Python libraries such as NumPy, pandas, scikit-learn, and matplotlib. You will then learn the different stages of data mining such as data loading, cleaning, analysis, and visualization. You will also get a full conceptual description of popular data transformation, clustering, and classification techniques. By the end of this book, you will be able to build an efficient data mining pipeline using Python without any hassle. What you will learnExplore the methods for summarizing datasets and visualizing/plotting dataCollect and format data for analytical workAssign data points into groups and visualize clustering patternsLearn how to predict continuous and categorical outputs for dataClean, filter noise from, and reduce the dimensions of dataSerialize a data processing model using scikit-learn’s pipeline featureDeploy the data processing model using Python’s pickle moduleWho this book is for Python developers interested in getting started with data mining will love this book. Budding data scientists and data analysts looking to quickly get to grips with practical data mining with Python will also find this book to be useful. Knowledge of Python programming is all you need to get started.
Data Mining with Python Quick Start Guide
You will learn how to implement a variety of popular data mining algorithms in Python (a programming language - software development environment) to tackle business problems and opportunities.This is the first version of the python book series and it covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining, and network analysis. It also includes: A new co-author Freeman Dlamini, brings both experiences teaching business analytics courses using Python, and expertise in the application of machine learning methods.A new section on ethical issues in data miningMore than a dozen case studies demonstrating applications for the data mining techniques describedEnd-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presentedData Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This book is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology."This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business-specific procedures such as social network analysis and text mining
Mathematical Methods for Knowledge Discovery and Data Mining
Annotation The field of data mining has seen a demand in recent years for the development of ideas and results in an integrated structure. Mathematical Methods for Knowledge Discovery & Data Mining focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; and many others. This Premier Reference Source is an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance and insurance, manufacturing, marketing, performance measurement, and telecommunications.