Data Mining With R


Data Mining With R pdf

Download Data Mining With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Mining With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Mining with R


Data Mining with R

Author: Luis Torgo

language: en

Publisher: CRC Press

Release Date: 2016-11-30


DOWNLOAD





Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

R and Data Mining


R and Data Mining

Author: Yanchang Zhao

language: en

Publisher: Academic Press

Release Date: 2012-12-31


DOWNLOAD





R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work

Learning Path


Learning Path

Author:

language: en

Publisher:

Release Date: 2017


DOWNLOAD





"Data mining is a growing demand on the market as the world is generating data at an increasing pace. R is a popular programming language for statistics. It can be used for day-to-day data analysis tasks. This Learning Path is the complete learning process for data-happy people. We begin with a thorough introduction to data mining and how R makes it easy with its many packages. We then move on to exploring data mining techniques, showing you how to apply different mining concepts to various statistical and data applications in a wide range of fields using R's vast set of algorithms. Discover the versatility of R for data mining with the collection of analysis techniques in this Learning Path."--Resource description page.