Data Modeling Made Simple
Download Data Modeling Made Simple PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Modeling Made Simple book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Modeling Made Simple
Author: Steve Hoberman
language: en
Publisher: Technics Publications Llc
Release Date: 2009
Read today's business headlines and you will see that many issues stem from people not having the right data at the right time. Data issues don't always make the front page, yet they exist within every organisation. We need to improve how we manage data -- and the most valuable tool for explaining, vaildating and managing data is a data model. This book provides the business or IT professional with a practical working knowledge of data modelling concepts and best practices. This book is written in a conversational style that encourages you to read it from start to finish and master these ten objectives: Know when a data model is needed and which type of data model is most effective for each situation; Read a data model of any size and complexity with the same confidence as reading a book; Build a fully normalised relational data model, as well as an easily navigatable dimensional model; Apply techniques to turn a logical data model into an efficient physical design; Leverage several templates to make requirements gathering more efficient and accurate; Explain all ten categories of the Data Model Scorecard®; Learn strategies to improve your working relationships with others; Appreciate the impact unstructured data has, and will have, on our data modelling deliverables; Learn basic UML concepts; Put data modelling in context with XML, metadata, and agile development.
Data Modeling Made Simple with PowerDesigner
Annotation This book will provide the business or IT professional with a practical working knowledge of data modelling concepts and best practices, and how to apply these principles with PowerDesigner. You will build many PowerDesigner data models along the way, increasing your skills in first the fundamentals and later in the book the more advanced features of PowerDesigner. The book contains six sections: Section I introduces data modelling along with its purpose and variations. Also included is an explanation of the important role of a data modelling tool, the key features required of any data modelling tool, and an introduction to the essential features of PowerDesigner; Section II explains all of the components on a data model including entities, data elements, relationships, and keys, and describes how to create and manage these objects in PowerDesigner. Also included is a discussion of the importance of quality names and definitions for your objects; Section III dives into the relational and dimensional subject area, logical, and physical data models, and describes how PowerDesigner supports these models and the connections between them. Learn how to get information into and out of PowerDesigner, and improve the quality of your data models with a cross-reference of key PowerDesigner features with the Data Model Scorecard; Section IV contains a PowerDesigner workshop designed to consolidate everything for you; Section V focuses on additional PowerDesigner features (some of which have already been introduced) which make life easier for data modellers; Section VI discusses PowerDesigner topics beyond data modelling, including the XML physical model and the other types of model available in PowerDesigner; it also discusses the role of PowerDesigner in data management, using the DAMA Data Management Body of Knowledge (DAMA-DMBOK) framework.
Data Modeling Made Simple
Author: Steve Hoberman
language: en
Publisher: Technics Publications, LLC
Release Date: 2005
Ever have a bad data day? If you are a business user, architect, analyst, designer or developer, then you have probably had some bad data days. It comes with the territory. Overcoming these problems is much easier if you have an in-depth understanding of the actual data. That's where a data model comes in handy. It's a diagram that uses text and symbols to represent groupings of data, giving you a clear picture of your business and application environment. The book provides the tools you need to read, create and validate models of your business and applications. Contains everything about modelling you need to know but were too afraid to ask, such as: What are the traditional and non-traditional uses of a data model? How do subject area, logical, and physical data models differ? When do I build a BSAM, ASAM, or CSAM? What is the easiest way to apply normalisation? Where can I best leverage abstraction? How do I decide whether to use denormalisation or dimensionality? What are primary, foreign, alternate, virtual, and surrogate keys? What is the best approach to building the models? How can I use the Scorecard system to validate a data model? Includes over 30 exercises to reinforce concepts and sharpen your skills!