Data Quality
Download Data Quality PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Quality book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Quality
Can any subject inspire less excitement than "data quality"? Yet a moment's thought reveals the ever-growing importance of quality data. From restated corporate earnings, to incorrect prices on the web, to the bombing of the Chinese Embassy, the media reports the impact of poor data quality on a daily basis. Every business operation creates or consumes huge quantities of data. If the data are wrong, time, money, and reputation are lost. In today's environment, every leader, every decision maker, every operational manager, every consumer, indeed everyone has a vested interest in data quality. Data Quality: The Field Guide provides the practical guidance needed to start and advance a data quality program. It motivates interest in data quality, describes the most important data quality problems facing the typical organization, and outlines what an organization must do to improve. It consists of 36 short chapters in an easy-to-use field guide format. Each chapter describes a single issue and how to address it. The book begins with sections that describe why leaders, whether CIOs, CFOs, or CEOs, should be concerned with data quality. It explains the pros and cons of approaches for addressing the issue. It explains what those organizations with the best data do. And it lays bare the social issues that prevent organizations from making headway. "Field tips" at the end of each chapter summarize the most important points. Allows readers to go directly to the topic of interest Provides web-based material so readers can cut and paste figures and tables into documents within their organizations Gives step-by-step instructions for applying most techniques and summarizes what "works"
Data Quality
Author: Prashanth Southekal
language: en
Publisher: John Wiley & Sons
Release Date: 2023-02-01
Discover how to achieve business goals by relying on high-quality, robust data In Data Quality: Empowering Businesses with Analytics and AI, veteran data and analytics professional delivers a practical and hands-on discussion on how to accelerate business results using high-quality data. In the book, you’ll learn techniques to define and assess data quality, discover how to ensure that your firm’s data collection practices avoid common pitfalls and deficiencies, improve the level of data quality in the business, and guarantee that the resulting data is useful for powering high-level analytics and AI applications. The author shows you how to: Profile for data quality, including the appropriate techniques, criteria, and KPIs Identify the root causes of data quality issues in the business apart from discussing the 16 common root causes that degrade data quality in the organization. Formulate the reference architecture for data quality, including practical design patterns for remediating data quality Implement the 10 best data quality practices and the required capabilities for improving operations, compliance, and decision-making capabilities in the business An essential resource for data scientists, data analysts, business intelligence professionals, chief technology and data officers, and anyone else with a stake in collecting and using high-quality data, Data Quality: Empowering Businesses with Analytics and AI will also earn a place on the bookshelves of business leaders interested in learning more about what sets robust data apart from the rest.
Data Quality
Author: Yng-Yuh Richard Wang
language: en
Publisher: Springer Science & Business Media
Release Date: 2001
Data Quality provides an exposé of research and practice in the data quality field for technically oriented readers. It is based on the research conducted at the MIT Total Data Quality Management (TDQM) program and work from other leading research institutions. This book is intended primarily for researchers, practitioners, educators and graduate students in the fields of Computer Science, Information Technology, and other interdisciplinary areas. It forms a theoretical foundation that is both rigorous and relevant for dealing with advanced issues related to data quality. Written with the goal to provide an overview of the cumulated research results from the MIT TDQM research perspective as it relates to database research, this book is an excellent introduction to Ph.D. who wish to further pursue their research in the data quality area. It is also an excellent theoretical introduction to IT professionals who wish to gain insight into theoretical results in the technically-oriented data quality area, and apply some of the key concepts to their practice.