Data Warehousing Data Mining And Olap
Download Data Warehousing Data Mining And Olap PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Warehousing Data Mining And Olap book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Data Warehousing, Data Mining, and OLAP
"Data Warehousing" is the nuts-and-bolts guide to designing a data management system using data warehousing, data mining, and online analytical processing (OLAP) and how successfully integrating these three technologies can give business a competitive edge.
Data Warehousing
This Book Is Mainly Intended For It Students And Professionals To Learn Or Implement Data Warehousing Technologies. It Experiences The Real-Time Environment And Promotes Planning, Managing, Designing, Implementing, Supporting, Maintaining And Analyzing Data Warehouse In Organizations And It Also Provides Various Mining Techniques As Well As Issues In Practical Use Of Data Mining Tools.The Book Is Designed For The Target Audience Such As Specialists, Trainers And It Users. It Does Not Assume Any Special Knowledge As Background. Understanding Of Computer Use, Databases And Statistics Will Be Helpful.
Learn Data Warehousing in 24 Hours
Unlike popular belief, Data Warehouse is not a single tool but a collection of software tools. A data warehouse will collect data from diverse sources into a single database. Using Business Intelligence tools, meaningful insights are drawn from this data. The best thing about “Learn Data Warehousing in 1 Day" is that it is small and can be completed in a day. With this e-book, you will be enough knowledge to contribute and participate in a Data warehouse implementation project. The book covers upcoming and promising technologies like Data Lakes, Data Mart, ELT (Extract Load Transform) amongst others. Following are detailed topics included in the book Table Of Content Chapter 1: What Is Data Warehouse? 1. What is Data Warehouse? 2. Types of Data Warehouse 3. Who needs Data warehouse? 4. Why We Need Data Warehouse? 5. Data Warehouse Tools Chapter 2: Data Warehouse Architecture 1. Characteristics of Data warehouse 2. Data Warehouse Architectures 3. Datawarehouse Components 4. Query Tools Chapter 3: ETL Process 1. What is ETL? 2. Why do you need ETL? 3. ETL Process 4. ETL tools Chapter 4: ETL Vs ELT 1. What is ETL? 2. Difference between ETL vs. ELT Chapter 5: Data Modeling 1. What is Data Modelling? 2. Types of Data Models 3. Characteristics of a physical data model Chapter 6: OLAP 1. What is Online Analytical Processing? 2. Types of OLAP systems 3. Advantages and Disadvantages of OLAP Chapter 7: Multidimensional Olap (MOLAP) 1. What is MOLAP? 2. MOLAP Architecture 3. MOLAP Tools Chapter 8: OLAP Vs OLTP 1. What is the meaning of OLAP? 2. What is the meaning of OLTP? 3. Difference between OLTP and OLAP Chapter 9: Dimensional Modeling 1. What is Dimensional Model? 2. Elements of Dimensional Data Model 3. Attributes 4. Difference between Dimension table vs. Fact table 5. Steps of Dimensional Modelling 6. Rules for Dimensional Modelling Chapter 10: Star and SnowFlake Schema 1. What is Multidimensional schemas? 2. What is a Star Schema? 3. What is a Snowflake Schema? 4. Difference between Start Schema and Snowflake Chapter 11: Data Mart 1. What is Data Mart? 2. Type of Data Mart 3. Steps in Implementing a Datamart Chapter 12: Data Mart Vs Data Warehouse 1. What is Data Warehouse? 2. What is Data Mart? 3. Differences between a Data Warehouse and a Data Mart Chapter 13: Data Lake 1. What is Data Lake? 2. Data Lake Architecture 3. Key Data Lake Concepts 4. Maturity stages of Data Lake Chapter 14: Data Lake Vs Data Warehouse 1. What is Data Warehouse? 2. What is Data Lake? 3. Key Difference between the Data Lake and Data Warehouse Chapter 15: What Is Business Intelligence? 1. What is Business Intelligence 2. Why is BI important? 3. How Business Intelligence systems are implemented? 4. Four types of BI users Chapter 16: Data Mining 1. What is Data Mining? 2. Types of Data 3. Data Mining Process 4. Modelling 5. Data Mining Techniques Chapter 17: Data Warehousing Vs Data Mining 1. What is Data warehouse? 2. What Is Data Mining? 3. Difference between Data mining and Data Warehousing?