Deep Time Series Forecasting With Python


Deep Time Series Forecasting With Python pdf

Download Deep Time Series Forecasting With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Time Series Forecasting With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Time Series Forecasting with Python


Deep Time Series Forecasting with Python

Author: N. Lewis

language: en

Publisher:

Release Date: 2016-12-11


DOWNLOAD





Master Deep Time Series Forecasting with Python! Deep Time Series Forecasting with Python takes you on a gentle, fun and unhurried practical journey to creating deep neural network models for time series forecasting with Python. It uses plain language rather than mathematics; And is designed for working professionals, office workers, economists, business analysts and computer users who want to try deep learning on their own time series data using Python. QUICK AND EASY: Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using Python. Examples are clearly described and can be typed directly into Python as printed on the page. NO EXPERIENCE? I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to see how to use deep learning for time series forecasting explained in plain language, and try it out for yourself. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Real world applications that make sense. Illustrations to deepen your understanding. Worked examples you can easily follow and immediately implement. Ideas you can actually use and try on your own data. CUT LEARNING TIME IN HALF!: This guide was written for people who want to get up to speed as soon as possible. Through a simple to follow process you will learn how to build deep time series forecasting models in the minimum amount of time using Python. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful business applications. YOU'LL LEARN HOW TO: Unleash the power of Long Short-Term Memory Neural Networks . Develop hands on skills using the Gated Recurrent Unit Neural Network. Design successful applications with Recurrent Neural Networks. Deploy Nonlinear Auto-regressive Network with Exogenous Inputs.. Adapt Deep Neural Networks for Time Series Forecasting. Master strategies to build superior Time Series Models. Everything you need to get started is contained within this book. Deep Time series Forecasting with Python is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!

Deep Learning for Time Series Forecasting


Deep Learning for Time Series Forecasting

Author: Jason Brownlee

language: en

Publisher: Machine Learning Mastery

Release Date: 2018-08-30


DOWNLOAD





Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.

Modern Time Series Forecasting with Python


Modern Time Series Forecasting with Python

Author: Manu Joseph

language: en

Publisher: Packt Publishing Ltd

Release Date: 2022-11-24


DOWNLOAD





Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts Key Features Explore industry-tested machine learning techniques used to forecast millions of time series Get started with the revolutionary paradigm of global forecasting models Get to grips with new concepts by applying them to real-world datasets of energy forecasting Book DescriptionWe live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML. This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability. By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.What you will learn Find out how to manipulate and visualize time series data like a pro Set strong baselines with popular models such as ARIMA Discover how time series forecasting can be cast as regression Engineer features for machine learning models for forecasting Explore the exciting world of ensembling and stacking models Get to grips with the global forecasting paradigm Understand and apply state-of-the-art DL models such as N-BEATS and Autoformer Explore multi-step forecasting and cross-validation strategies Who this book is for The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.