Discrete Optimization Algorithms
Download Discrete Optimization Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Optimization Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discrete Optimization Algorithms
Author: Maciej M. Sys?o
language: en
Publisher: Courier Corporation
Release Date: 2006-01-01
Rich in publications, the well-established field of discrete optimization nevertheless features relatively few books with ready-to-use computer programs. This book, geared toward upper-level undergraduates and graduate students, addresses that need. In addition, it offers a look at the programs' derivation and performance characteristics. Subjects include linear and integer programming, packing and covering, optimization on networks, and coloring and scheduling. A familiarity with design, analysis, and use of computer algorithms is assumed, along with knowledge of programming in Pascal. The book can be used as a supporting text in discrete optimization courses or as a software handbook, with twenty-six programs that execute the most common algorithms in each topic area. Each chapter is self-contained, allowing readers to browse at will.
Nonlinear Discrete Optimization
Author: Shmuel Onn
language: en
Publisher: European Mathematical Society
Release Date: 2010
This monograph develops an algorithmic theory of nonlinear discrete optimization. It introduces a simple and useful setup, which enables the polynomial time solution of broad fundamental classes of nonlinear combinatorial optimization and integer programming problems in variable dimension. An important part of this theory is enhanced by recent developments in the algebra of Graver bases. The power of the theory is demonstrated by deriving the first polynomial time algorithms in a variety of application areas within operations research and statistics, including vector partitioning, matroid optimization, experimental design, multicommodity flows, multi-index transportation and privacy in statistical databases. This monograph is intended for graduate students and researchers. It is accessible to anyone with standard undergraduate knowledge and mathematical maturity.
Robust Discrete Optimization and Its Applications
Author: Panos Kouvelis
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.