Distributed Algorithms
Download Distributed Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributed Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Distributed Algorithms
Author: Gerard Tel
language: en
Publisher: Cambridge University Press
Release Date: 2000-09-28
Distributed algorithms have been the subject of intense development over the last twenty years. The second edition of this successful textbook provides an up-to-date introduction both to the topic, and to the theory behind the algorithms. The clear presentation makes the book suitable for advanced undergraduate or graduate courses, whilst the coverage is sufficiently deep to make it useful for practising engineers and researchers. The author concentrates on algorithms for the point-to-point message passing model, and includes algorithms for the implementation of computer communication networks. Other key areas discussed are algorithms for the control of distributed applications (wave, broadcast, election, termination detection, randomized algorithms for anonymous networks, snapshots, deadlock detection, synchronous systems), and fault-tolerance achievable by distributed algorithms. The two new chapters on sense of direction and failure detectors are state-of-the-art and will provide an entry to research in these still-developing topics.
Distributed Algorithms
In Distributed Algorithms, Nancy Lynch provides a blueprint for designing, implementing, and analyzing distributed algorithms. She directs her book at a wide audience, including students, programmers, system designers, and researchers. Distributed Algorithms contains the most significant algorithms and impossibility results in the area, all in a simple automata-theoretic setting. The algorithms are proved correct, and their complexity is analyzed according to precisely defined complexity measures. The problems covered include resource allocation, communication, consensus among distributed processes, data consistency, deadlock detection, leader election, global snapshots, and many others. The material is organized according to the system model—first by the timing model and then by the interprocess communication mechanism. The material on system models is isolated in separate chapters for easy reference. The presentation is completely rigorous, yet is intuitive enough for immediate comprehension. This book familiarizes readers with important problems, algorithms, and impossibility results in the area: readers can then recognize the problems when they arise in practice, apply the algorithms to solve them, and use the impossibility results to determine whether problems are unsolvable. The book also provides readers with the basic mathematical tools for designing new algorithms and proving new impossibility results. In addition, it teaches readers how to reason carefully about distributed algorithms—to model them formally, devise precise specifications for their required behavior, prove their correctness, and evaluate their performance with realistic measures.
Distributed Algorithms, second edition
The new edition of a guide to distributed algorithms that emphasizes examples and exercises rather than the intricacies of mathematical models. This book offers students and researchers a guide to distributed algorithms that emphasizes examples and exercises rather than the intricacies of mathematical models. It avoids mathematical argumentation, often a stumbling block for students, teaching algorithmic thought rather than proofs and logic. This approach allows the student to learn a large number of algorithms within a relatively short span of time. Algorithms are explained through brief, informal descriptions, illuminating examples, and practical exercises. The examples and exercises allow readers to understand algorithms intuitively and from different perspectives. Proof sketches, arguing the correctness of an algorithm or explaining the idea behind fundamental results, are also included. The algorithms presented in the book are for the most part “classics,” selected because they shed light on the algorithmic design of distributed systems or on key issues in distributed computing and concurrent programming. This second edition has been substantially revised. A new chapter on distributed transaction offers up-to-date treatment of database transactions and the important evolving area of transactional memory. A new chapter on security discusses two exciting new topics: blockchains and quantum cryptography. Sections have been added that cover such subjects as rollback recovery, fault-tolerant termination detection, and consensus for shared memory. An appendix offers pseudocode descriptions of many algorithms. Solutions and slides are available for instructors. Distributed Algorithms can be used in courses for upper-level undergraduates or graduate students in computer science, or as a reference for researchers in the field.