Granular Computing Based Machine Learning
Download Granular Computing Based Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Granular Computing Based Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Granular Computing Based Machine Learning
This book explores the significant role of granular computing in advancing machine learning towards in-depth processing of big data. It begins by introducing the main characteristics of big data, i.e., the five Vs—Volume, Velocity, Variety, Veracity and Variability. The book explores granular computing as a response to the fact that learning tasks have become increasingly more complex due to the vast and rapid increase in the size of data, and that traditional machine learning has proven too shallow to adequately deal with big data. Some popular types of traditional machine learning are presented in terms of their key features and limitations in the context of big data. Further, the book discusses why granular-computing-based machine learning is called for, and demonstrates how granular computing concepts can be used in different ways to advance machine learning for big data processing. Several case studies involving big data are presented by using biomedical data and sentiment data, in order to show the advances in big data processing through the shift from traditional machine learning to granular-computing-based machine learning. Finally, the book stresses the theoretical significance, practical importance, methodological impact and philosophical aspects of granular-computing-based machine learning, and suggests several further directions for advancing machine learning to fit the needs of modern industries. This book is aimed at PhD students, postdoctoral researchers and academics who are actively involved in fundamental research on machine learning or applied research on data mining and knowledge discovery, sentiment analysis, pattern recognition, image processing, computer vision and big data analytics. It will also benefit a broader audience of researchers and practitioners who are actively engaged in the research and development of intelligent systems.
Granular Computing and Big Data Advancements
In an era defined by the deluge of data, navigating the complexities of decision-making under conditions of uncertainty has emerged as a formidable challenge for scholars and practitioners alike. The sheer volume and velocity of information inundating decision-makers often leads to paralysis or misguided choices, amplifying the risks inherent in uncertain environments. Granular Computing and Big Data Advancements provides insights and solutions in this challenging landscape. The impact of Granular Computing and Big Data Advancements reverberates across the research community, offering a cohesive resource that bridges the gap between theory and practice. With its interdisciplinary approach and emphasis on innovation, the book fosters collaboration and empowers scholars to tackle complex challenges head-on. Whether researchers seek novel methodologies, practitioners aim to enhance decision-making processes, or students embark on their academic journey, this publication serves as a cornerstone in the quest for effective decision-making amidst the uncertainties of the modern world.
Machine Learning and Granular Computing: A Synergistic Design Environment
This volume provides the reader with a comprehensive and up-to-date treatise positioned at the junction of the areas of Machine Learning (ML) and Granular Computing (GrC). ML offers a wealth of architectures and learning methods. Granular Computing addresses useful aspects of abstraction and knowledge representation that are of importance in the advanced design of ML architectures. In unison, ML and GrC support advances of the fundamental learning paradigm. As built upon synergy, this unified environment focuses on a spectrum of methodological and algorithmic issues, discusses implementations and elaborates on applications. The chapters bring forward recent developments showing ways of designing synergistic and coherently structured ML-GrC environment. The book will be of interest to a broad audience including researchers and practitioners active in the area of ML or GrC and interested in following its timely trends and new pursuits.