Hands On Gradient Boosting With Python


Hands On Gradient Boosting With Python pdf

Download Hands On Gradient Boosting With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Gradient Boosting With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Gradient Boosting with XGBoost and scikit-learn


Hands-On Gradient Boosting with XGBoost and scikit-learn

Author: Corey Wade

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-10-16


DOWNLOAD





Get to grips with building robust XGBoost models using Python and scikit-learn for deployment Key Features Get up and running with machine learning and understand how to boost models with XGBoost in no time Build real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal results Discover tips and tricks and gain innovative insights from XGBoost Kaggle winners Book Description XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently. The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You'll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You'll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you'll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines. By the end of the book, you'll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed. What you will learn Build gradient boosting models from scratch Develop XGBoost regressors and classifiers with accuracy and speed Analyze variance and bias in terms of fine-tuning XGBoost hyperparameters Automatically correct missing values and scale imbalanced data Apply alternative base learners like dart, linear models, and XGBoost random forests Customize transformers and pipelines to deploy XGBoost models Build non-correlated ensembles and stack XGBoost models to increase accuracy Who this book is for This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.

Hands-On Gradient Boosting with Python


Hands-On Gradient Boosting with Python

Author: Dr Adrian Devlin

language: en

Publisher: Independently Published

Release Date: 2025-12-11


DOWNLOAD





Are you curious about machine learning but feel overwhelmed by math, jargon, and complex tutorials? If words like XGBoost, LightGBM, and gradient boosting sound exciting but intimidating, this book is your friendly guide through the noise. Hands-On Gradient Boosting with Python: A Practical Introduction to XGBoost, LightGBM, and the Scikit-Learn Ecosystem is written for complete beginners and self-taught developers who want a clear, step-by-step path into modern Python machine learning-without needing a PhD or years of coding experience. You'll start with the basics of Python, scikit-learn, and tabular data, then gently build up to powerful boosting models used in real-world projects and Kaggle competitions. Every chapter walks you through code line by line, explains why each step matters, and shows you how to avoid common mistakes. Inside, you'll learn how to: Set up your Python machine learning environment with confidence Understand core concepts like decision trees, ensembles, and gradient boosting in plain English Build practical models with scikit-learn, XGBoost, and LightGBM for regression and classification Work on real-world projects such as house price prediction and credit risk scoring Tune hyperparameters, handle imbalanced data, and evaluate models with metrics like AUC, F1, and RMSE Use SHAP and LIME for model explainability so you can trust your predictions Save, load, and deploy your models so they are ready for real applications Throughout the book, you're treated like a learner-not a walking error message. Mistakes are normalized, experiments are encouraged, and every "small win" is celebrated: Clear explanations before any code Gradual progression from simple to advanced models Gentle reminders that confusion is part of learning Practical tips for debugging, improving, and reusing your work Whether you're a student, an aspiring data scientist, or a developer stepping into Python machine learning for the first time, this book becomes your supportive companion-one that makes gradient boosting feel approachable, understandable, and genuinely fun. If you're ready to stop scrolling tutorials and start building real models that actually work, open this book and begin your hands-on journey into gradient boosting with Python today.

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits


Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

Author: Tarek Amr

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-07-24


DOWNLOAD





Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems Key FeaturesDelve into machine learning with this comprehensive guide to scikit-learn and scientific PythonMaster the art of data-driven problem-solving with hands-on examplesFoster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithmsBook Description Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits. The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms. By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production. What you will learnUnderstand when to use supervised, unsupervised, or reinforcement learning algorithmsFind out how to collect and prepare your data for machine learning tasksTackle imbalanced data and optimize your algorithm for a bias or variance tradeoffApply supervised and unsupervised algorithms to overcome various machine learning challengesEmploy best practices for tuning your algorithm’s hyper parametersDiscover how to use neural networks for classification and regressionBuild, evaluate, and deploy your machine learning solutions to productionWho this book is for This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.