Intermediate Python And Large Language Models
Download Intermediate Python And Large Language Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Intermediate Python And Large Language Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Intermediate Python and Large Language Models
Harness the power of Large Language Models (LLMs) to build cutting-edge AI applications with Python and LangChain. This book provides a hands-on approach to understanding, implementing, and deploying LLM-powered solutions, equipping developers, data scientists, and AI enthusiasts with the tools to create real-world AI applications. The journey begins with an introduction to LangChain, covering its core concepts, integration with Python, and essential components such as prompt engineering, memory management, and retrieval-augmented generation (RAG). As you progress, you’ll explore advanced AI workflows, including multi-agent architectures, fine-tuning strategies, and optimization techniques to maximize LLM efficiency. The book also takes a deep dive into practical applications of LLMs, guiding you through the development of intelligent chatbots, document retrieval systems, content generation pipelines, and AI-driven automation tools. You’ll learn how to leverage APIs, integrate LLMs into web and mobile platforms, and optimize large-scale deployments while addressing key challenges such as inference latency, cost efficiency, and ethical considerations. By the end of the book, you’ll have gained a solid understanding of LLM architectures, hands-on experience with LangChain, and the expertise to build scalable AI applications that redefine human-computer interaction. What You Will Learn Understand the fundamentals of LangChain and Python for LLM development Know advanced AI workflows, including fine-tuning and memory management Build AI-powered applications such as chatbots, retrieval systems, and automation tools Know deployment strategies and performance optimization for real-world use Use best practices for scalability, security, and responsible AI implementation Unlock the full potential of LLMs and take your AI development skills to the next level Who This Book Is For Software engineers and Python developers interested in learning the foundations of LLMs and building advanced modern LLM applications for various tasks
The Practical Guide to Large Language Models
This book is a practical guide to harnessing Hugging Face's powerful transformers library, unlocking access to the largest open-source LLMs. By simplifying complex NLP concepts and emphasizing practical application, it empowers data scientists, machine learning engineers, and NLP practitioners to build robust solutions without delving into theoretical complexities. The book is structured into three parts to facilitate a step-by-step learning journey. Part One covers building production-ready LLM solutions introduces the Hugging Face library and equips readers to solve most of the common NLP challenges without requiring deep knowledge of transformer internals. Part Two focuses on empowering LLMs with RAG and intelligent agents exploring Retrieval-Augmented Generation (RAG) models, demonstrating how to enhance answer quality and develop intelligent agents. Part Three covers LLM advances focusing on expert topics such as model training, principles of transformer architecture and other cutting-edge techniques related to the practical application of language models. Each chapter includes practical examples, code snippets, and hands-on projects to ensure applicability to real-world scenarios. This book bridges the gap between theory and practice, providing professionals with the tools and insights to develop practical and efficient LLM solutions. What you will learn: What are the different types of tasks modern LLMs can solve How to select the most suitable pre-trained LLM for specific tasks How to enrich LLM with a custom knowledge base and build intelligent systems What are the core principles of Language Models, and how to tune them How to build robust LLM-based AI Applications Who this book is for: Data scientists, machine learning engineers, and NLP specialists with basic Python skills, introductory PyTorch knowledge, and a primary understanding of deep learning concepts, ready to start applying Large Language Models in practice.
Mastering Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) represents the cutting edge of AI innovation, bridging the gap between large language models (LLMs) and real-world knowledge. This book provides the definitive roadmap for building, optimizing, and deploying enterprise-grade RAG systems that deliver measurable business value. This comprehensive guide takes you beyond basic concepts to advanced implementation strategies, covering everything from architectural patterns to production deployment. You'll explore proven techniques for document processing, vector optimization, retrieval enhancement, and system scaling, supported by real-world case studies from leading organizations. Key Learning Objectives Design and implement production-ready RAG architectures for diverse enterprise use cases Master advanced retrieval strategies including graph-based approaches and agentic systems Optimize performance through sophisticated chunking, embedding, and vector database techniques Navigate the integration of RAG with modern LLMs and generative AI frameworks Implement robust evaluation frameworks and quality assurance processes Deploy scalable solutions with proper security, privacy, and governance controls Real-World Applications Intelligent document analysis and knowledge extraction Code generation and technical documentation systems Customer support automation and decision support tools Regulatory compliance and risk management solutions Whether you're an AI engineer scaling existing systems or a technical leader planning next-generation capabilities, this book provides the expertise needed to succeed in the rapidly evolving landscape of enterprise AI. What You Will Learn Architecture Mastery: Design scalable RAG systems from prototype to enterprise production Advanced Retrieval: Implement sophisticated strategies, including graph-based and multi-modal approaches Performance Optimization: Fine-tune embedding models, vector databases, and retrieval algorithms for maximum efficiency LLM Integration: Seamlessly combine RAG with state-of-the-art language models and generative AI frameworks Production Excellence: Deploy robust systems with monitoring, evaluation, and continuous improvement processes Industry Applications: Apply RAG solutions across diverse enterprise sectors and use cases Who This Book Is For Primary audience: Senior AI/ML engineers, data scientists, and technical architects building production AI systems; secondary audience: Engineering managers, technical leads, and AI researchers working with large-scale language models and information retrieval systems Prerequisites: Intermediate Python programming, basic understanding of machine learning concepts, and familiarity with natural language processing fundamentals