Java Data Science Cookbook
Download Java Data Science Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Java Data Science Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Java Data Science Cookbook
Recipes to help you overcome your data science hurdles using Java About This Book This book provides modern recipes in small steps to help an apprentice cook become a master chef in data science Use these recipes to obtain, clean, analyze, and learn from your data Learn how to get your data science applications to production and enterprise environments effortlessly Who This Book Is For This book is for Java developers who are familiar with the fundamentals of data science and want to improve their skills to become a pro. What You Will Learn Find out how to clean and make datasets ready so you can acquire actual insights by removing noise and outliers Develop the skills to use modern machine learning techniques to retrieve information and transform data to knowledge. retrieve information from large amount of data in text format. Familiarize yourself with cutting-edge techniques to store and search large volumes of data and retrieve information from large amounts of data in text format Develop basic skills to apply big data and deep learning technologies on large volumes of data Evolve your data visualization skills and gain valuable insights from your data Get to know a step-by-step formula to develop an industry-standard, large-scale, real-life data product Gain the skills to visualize data and interact with users through data insights In Detail If you are looking to build data science models that are good for production, Java has come to the rescue. With the aid of strong libraries such as MLlib, Weka, DL4j, and more, you can efficiently perform all the data science tasks you need to. This unique book provides modern recipes to solve your common and not-so-common data science-related problems. We start with recipes to help you obtain, clean, index, and search data. Then you will learn a variety of techniques to analyze, learn from, and retrieve information from data. You will also understand how to handle big data, learn deeply from data, and visualize data. Finally, you will work through unique recipes that solve your problems while taking data science to production, writing distributed data science applications, and much more—things that will come in handy at work. Style and approach This book contains short yet very effective recipes to solve most common problems. Some recipes cater to very specific, rare pain points. The recipes cover different data sets and work very closely to real production environments
DATA SCIENCE WORKSHOP: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI
This Data Science Workshop presents a comprehensive journey through lung cancer analysis. Beginning with data exploration, the dataset is thoroughly examined to uncover insights into its structure and contents. The focus then shifts to categorizing features and understanding their distribution patterns, revealing key trends and relationships that could impact the predictive models. To predict lung cancer using machine learning models, an extensive grid search is conducted, fine-tuning model hyperparameters for optimal performance. The iterative process involves training various models, such as K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Naive Bayes, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron, and evaluating their outcomes to select the best-performing approach. Utilizing GridSearchCV aids in systematically optimizing parameters to enhance predictive accuracy. Deep Learning is harnessed through Artificial Neural Networks (ANN), which involve building multi-layered models capable of learning intricate patterns from data. The ANN architecture, comprising input, hidden, and output layers, is designed to capture the complex relationships within the dataset. Metrics like accuracy, precision, recall, and F1-score are employed to comprehensively evaluate model performance. These metrics provide a holistic view of the model's ability to classify lung cancer cases accurately and minimize false positives or negatives. The Graphical User Interface (GUI) aspect of the project is developed using PyQt, enabling user-friendly interactions with the predictive models. The GUI design includes features such as radio buttons for selecting preprocessing options (Raw, Normalization, or Standardization), a combobox for choosing the ANN model type (e.g., CNN 1D), and buttons to initiate training and prediction. The PyQt interface enhances usability by allowing users to visualize predictions, classification reports, confusion matrices, and loss-accuracy plots. The GUI's functionality expands to encompass the entire workflow. It enables data preprocessing by loading and splitting the dataset into training and testing subsets. Users can then select machine learning or deep learning models for training. The trained models are saved for future use to avoid retraining. The interface also facilitates model evaluation, showcasing accuracy scores, classification reports detailing precision and recall, and visualizations depicting loss and accuracy trends over epochs. The project's educational value lies in its comprehensive approach, taking participants through every step of a data science pipeline. Attendees gain insights into data preprocessing, model selection, hyperparameter tuning, and performance evaluation. The integration of machine learning and deep learning methodologies, along with GUI development, provides a well-rounded understanding of creating predictive tools for real-world applications. Participants leave the workshop empowered with the skills to explore and analyze medical datasets, implement machine learning and deep learning models, and build user-friendly interfaces for effective interaction. The workshop bridges the gap between theoretical knowledge and practical implementation, fostering a deeper understanding of data-driven decision-making in the realm of medical diagnostics and classification.
DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON
In this comprehensive data science project focusing on sales analysis, forecasting, clustering, and prediction with Python, we embarked on an enlightening journey of data exploration and analysis. Our primary objective was to gain valuable insights from the dataset and leverage the power of machine learning to make accurate predictions and informed decisions. We began by meticulously exploring the dataset, examining its structure, and identifying any missing or inconsistent data. By visualizing features' distributions and conducting statistical analyses, we gained a better understanding of the data's characteristics and potential challenges. The first key aspect of the project was weekly sales forecasting. We employed various machine learning regression models, including Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, KNN Regression, Catboost Regression, Naïve Bayes Regression, and Multi-Layer Perceptron Regression. These models enabled us to predict weekly sales based on relevant features, allowing us to uncover patterns and relationships between different factors and sales performance. To optimize the performance of our regression models, we employed grid search with cross-validation. This technique systematically explored hyperparameter combinations to find the optimal configuration, maximizing the models' accuracy and predictive capabilities. Moving on to data segmentation, we adopted the widely-used K-means clustering technique, an unsupervised learning method. The goal was to divide data into distinct segments. By determining the optimal number of clusters through grid search with cross-validation, we ensured that the clustering accurately captured the underlying patterns in the data. The next phase of the project focused on predicting the cluster of new customers using machine learning classifiers. We employed powerful classifiers such as Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP) to make accurate predictions. Grid search with cross-validation was again applied to fine-tune the classifiers' hyperparameters, enhancing their performance. Throughout the project, we emphasized the significance of feature scaling techniques, such as Min-Max scaling and Standardization. These preprocessing steps played a crucial role in ensuring that all features were on the same scale, contributing equally during model training, and improving the models' interpretability. Evaluation of our models was conducted using various metrics. For regression tasks, we utilized mean squared error, while classification tasks employed accuracy, precision, recall, and F1-score. The use of cross-validation helped validate the models' robustness, providing comprehensive assessments of their effectiveness. Visualization played a vital role in presenting our findings effectively. Utilizing libraries such as Matplotlib and Seaborn, we created informative visualizations that facilitated the communication of complex insights to stakeholders and decision-makers. Throughout the project, we followed an iterative approach, refining our strategies through data preprocessing, model training, and hyperparameter tuning. The grid search technique proved to be an invaluable tool in identifying the best parameter combinations, resulting in more accurate predictions and meaningful customer segmentation. In conclusion, this data science project demonstrated the power of machine learning techniques in sales analysis, forecasting, and customer segmentation. The insights and recommendations generated from the models can provide valuable guidance for businesses seeking to optimize sales strategies, target marketing efforts, and make data-driven decisions to achieve growth and success. The project showcases the importance of leveraging advanced analytical methods to unlock hidden patterns and unleash the full potential of data for business success.