Learning Geospatial Analysis With Python Third Edition
Download Learning Geospatial Analysis With Python Third Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning Geospatial Analysis With Python Third Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Learning Geospatial Analysis with Python
Learn the core concepts of geospatial data analysis for building actionable and insightful GIS applications Key Features Create GIS solutions using the new features introduced in Python 3.7 Explore a range of GIS tools and libraries such as PostGIS, QGIS, and PROJ Learn to automate geospatial analysis workflows using Python and Jupyter Book DescriptionGeospatial analysis is used in almost every domain you can think of, including defense, farming, and even medicine. With this systematic guide, you'll get started with geographic information system (GIS) and remote sensing analysis using the latest features in Python. This book will take you through GIS techniques, geodatabases, geospatial raster data, and much more using the latest built-in tools and libraries in Python 3.7. You'll learn everything you need to know about using software packages or APIs and generic algorithms that can be used for different situations. Furthermore, you'll learn how to apply simple Python GIS geospatial processes to a variety of problems, and work with remote sensing data. By the end of the book, you'll be able to build a generic corporate system, which can be implemented in any organization to manage customer support requests and field support personnel.What you will learn Automate geospatial analysis workflows using Python Code the simplest possible GIS in just 60 lines of Python Create thematic maps with Python tools such as PyShp, OGR, and the Python Imaging Library Understand the different formats that geospatial data comes in Produce elevation contours using Python tools Create flood inundation models Apply geospatial analysis to real-time data tracking and storm chasing Who this book is forThis book is for Python developers, researchers, or analysts who want to perform geospatial modeling and GIS analysis with Python. Basic knowledge of digital mapping and analysis using Python or other scripting languages will be helpful.
Applied Geospatial Data Science with Python
Author: David S. Jordan
language: en
Publisher: Packt Publishing Ltd
Release Date: 2023-02-28
Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python The book includes colored images of important concepts Key Features Learn how to integrate spatial data and spatial thinking into traditional data science workflows Develop a spatial perspective and learn to avoid common pitfalls along the way Gain expertise through practical case studies applicable in a variety of industries with code samples that can be reproduced and expanded Book DescriptionData scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python. Throughout this book, you’ll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You’ll learn how to read, process, and manipulate spatial data effectively. With data in hand, you’ll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you’ll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries. By the end of the book, you’ll be able to tackle random data, find meaningful correlations, and make geospatial data models.What you will learn Understand the fundamentals needed to work with geospatial data Transition from tabular to geo-enabled data in your workflows Develop an introductory portfolio of spatial data science work using Python Gain hands-on skills with case studies relevant to different industries Discover best practices focusing on geospatial data to bring a positive change in your environment Explore solving use cases, such as traveling salesperson and vehicle routing problems Who this book is for This book is for you if you are a data scientist seeking to incorporate geospatial thinking into your workflows or a GIS professional seeking to incorporate data science methods into yours. You’ll need to have a foundational knowledge of Python for data analysis and/or data science.
Geospatial Data Analytics on AWS
Author: Scott Bateman
language: en
Publisher: Packt Publishing Ltd
Release Date: 2023-06-30
Build an end-to-end geospatial data lake in AWS using popular AWS services such as RDS, Redshift, DynamoDB, and Athena to manage geodata Purchase of the print or Kindle book includes a free PDF eBook. Key Features Explore the architecture and different use cases to build and manage geospatial data lakes in AWS Discover how to leverage AWS purpose-built databases to store and analyze geospatial data Learn how to recognize which anti-patterns to avoid when managing geospatial data in the cloud Book DescriptionManaging geospatial data and building location-based applications in the cloud can be a daunting task. This comprehensive guide helps you overcome this challenge by presenting the concept of working with geospatial data in the cloud in an easy-to-understand way, along with teaching you how to design and build data lake architecture in AWS for geospatial data. You’ll begin by exploring the use of AWS databases like Redshift and Aurora PostgreSQL for storing and analyzing geospatial data. Next, you’ll leverage services such as DynamoDB and Athena, which offer powerful built-in geospatial functions for indexing and querying geospatial data. The book is filled with practical examples to illustrate the benefits of managing geospatial data in the cloud. As you advance, you’ll discover how to analyze and visualize data using Python and R, and utilize QuickSight to share derived insights. The concluding chapters explore the integration of commonly used platforms like Open Data on AWS, OpenStreetMap, and ArcGIS with AWS to enable you to optimize efficiency and provide a supportive community for continuous learning. By the end of this book, you’ll have the necessary tools and expertise to build and manage your own geospatial data lake on AWS, along with the knowledge needed to tackle geospatial data management challenges and make the most of AWS services.What you will learn Discover how to optimize the cloud to store your geospatial data Explore management strategies for your data repository using AWS Single Sign-On and IAM Create effective SQL queries against your geospatial data using Athena Validate postal addresses using Amazon Location services Process structured and unstructured geospatial data efficiently using R Use Amazon SageMaker to enable machine learning features in your application Explore the free and subscription satellite imagery data available for use in your GIS Who this book is forIf you understand the importance of accurate coordinates, but not necessarily the cloud, then this book is for you. This book is best suited for GIS developers, GIS analysts, data analysts, and data scientists looking to enhance their solutions with geospatial data for cloud-centric applications. A basic understanding of geographic concepts is suggested, but no experience with the cloud is necessary for understanding the concepts in this book.