Lf320 Linux Kernel Internals And Debugging
Download Lf320 Linux Kernel Internals And Debugging PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lf320 Linux Kernel Internals And Debugging book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
LF320 Linux Kernel Internals and Debugging
Linux Kernel Internals and Debugging is designed to provide experienced programmers with a solid understanding of the Linux kernel. Upon mastering this material, you will have a basic understanding of the Linux architecture, kernel algorithms, hardware and memory management, modularization techniques and debugging.
Linux Kernel Debugging
Author: Kaiwan N. Billimoria
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-08-05
Effectively debug kernel modules, device drivers, and the kernel itself by gaining a solid understanding of powerful open source tools and advanced kernel debugging techniques Key Features Fully understand how to use a variety of kernel and module debugging tools and techniques using examples Learn to expertly interpret a kernel Oops and identify underlying defect(s) Use easy-to-look up tables and clear explanations of kernel-level defects to make this complex topic easy Book DescriptionThe Linux kernel is at the very core of arguably the world’s best production-quality OS. Debugging it, though, can be a complex endeavor. Linux Kernel Debugging is a comprehensive guide to learning all about advanced kernel debugging. This book covers many areas in-depth, such as instrumentation-based debugging techniques (printk and the dynamic debug framework), and shows you how to use Kprobes. Memory-related bugs tend to be a nightmare – two chapters are packed with tools and techniques devoted to debugging them. When the kernel gifts you an Oops, how exactly do you interpret it to be able to debug the underlying issue? We’ve got you covered. Concurrency tends to be an inherently complex topic, so a chapter on lock debugging will help you to learn precisely what data races are, including using KCSAN to detect them. Some thorny issues, both debug- and performance-wise, require detailed kernel-level tracing; you’ll learn to wield the impressive power of Ftrace and its frontends. You’ll also discover how to handle kernel lockups, hangs, and the dreaded kernel panic, as well as leverage the venerable GDB tool within the kernel (KGDB), along with much more. By the end of this book, you will have at your disposal a wide range of powerful kernel debugging tools and techniques, along with a keen sense of when to use which.What you will learn Explore instrumentation-based printk along with the powerful dynamic debug framework Use static and dynamic Kprobes to trap into kernel/module functions Catch kernel memory defects with KASAN, UBSAN, SLUB debug, and kmemleak Interpret an Oops in depth and precisely identify it s source location Understand data races and use KCSAN to catch evasive concurrency defects Leverage Ftrace and trace-cmd to trace the kernel flow in great detail Write a custom kernel panic handler and detect kernel lockups and hangs Use KGDB to single-step and debug kernel/module source code Who this book is for This book is for Linux kernel developers, module/driver authors, and testers interested in debugging and enhancing their Linux systems at the level of the kernel. System administrators who want to understand and debug the internal infrastructure of their Linux kernels will also find this book useful. A good grasp on C programming and the Linux command line is necessary. Some experience with kernel (module) development will help you follow along.
Linux Kernel Programming
Author: Kaiwan N Billimoria
language: en
Publisher: Packt Publishing Ltd
Release Date: 2021-03-19
Learn how to write high-quality kernel module code, solve common Linux kernel programming issues, and understand the fundamentals of Linux kernel internals Key Features Discover how to write kernel code using the Loadable Kernel Module framework Explore industry-grade techniques to perform efficient memory allocation and data synchronization within the kernel Understand the essentials of key internals topics such as kernel architecture, memory management, CPU scheduling, and kernel synchronization Book DescriptionLinux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.What you will learn Write high-quality modular kernel code (LKM framework) for 5.x kernels Configure and build a kernel from source Explore the Linux kernel architecture Get to grips with key internals regarding memory management within the kernel Understand and work with various dynamic kernel memory alloc/dealloc APIs Discover key internals aspects regarding CPU scheduling within the kernel Gain an understanding of kernel concurrency issues Find out how to work with key kernel synchronization primitives Who this book is for This book is for Linux programmers beginning to find their way with Linux kernel development. If you’re a Linux kernel and driver developer looking to overcome frequent and common kernel development issues, or understand kernel intervals, you’ll find plenty of useful information. You’ll need a solid foundation of Linux CLI and C programming before you can jump in.