Machine Learning Essentials


Machine Learning Essentials pdf

Download Machine Learning Essentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Essentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Machine Learning Essentials and Applications


Machine Learning Essentials and Applications

Author: Mrs. N. Jayasri

language: en

Publisher: RK Publication

Release Date: 2024-07-27


DOWNLOAD





Machine Learning Essentials and Applications a comprehensive of machine learning's core principles, methodologies, and real-world applications. This book is designed for both beginners and professionals, covering essential topics like supervised and unsupervised learning, neural networks, and deep learning. With clear explanations and practical examples, it connects theory to practice, showcasing machine learning’s impact across industries such as healthcare, finance, and technology. Ideal for readers seeking foundational knowledge and insights into the transformative potential of machine learning in various fields.

Machine Learning Essentials You Always Wanted to Know


Machine Learning Essentials You Always Wanted to Know

Author: Dhairya Parikh

language: en

Publisher: Vibrant Publishers

Release Date: 2025-07-04


DOWNLOAD





· Covers key algorithms and techniques · Ideal for students and professionals · Hands-on implementation included Master the fundamentals of ML and take the first step towards a career in AI! In today’s rapidly evolving world, machine learning (ML) is no longer just for researchers or data scientists. From personalized recommendations on streaming platforms to fraud detection in banking, ML powers many aspects of our daily lives. As industries increasingly adopt AI-driven solutions, learning machine learning has become a valuable skill. Yet, many find the subject overwhelming, often intimidated by its mathematical complexity. That’s where Machine Learning Essentials You Always Wanted to Know (Machine Learning Essentials) comes in. This beginner-friendly guide offers a structured, step-by-step approach to understanding machine learning concepts without unnecessary jargon. Whether you are a student, a professional looking to transition into AI, or simply curious about how machines learn, this book provides a clear and practical roadmap to mastering ML. Authored by Dhairya Parikh, an experienced data engineer who returned to academia to refine his expertise, this book bridges the gap between theory and real-world application. It simplifies the core concepts of ML, breaking them down into digestible explanations paired with hands-on coding exercises to help you apply what you learn. What You’ll Learn: · The fundamentals of machine learning and how it powers modern technology · The three key types of ML—Supervised, Unsupervised, and Reinforcement Learning · How to combine algorithms, data, and models to develop AI-driven solutions · Practical coding techniques to build and implement machine learning models Part of Vibrant Publishers’ Self-Learning Management Series, this book serves as a valuable guide for building machine learning skills, enhancing your expertise, and advancing your career in AI and data science.

Machine Learning Essentials


Machine Learning Essentials

Author: Alboukadel Kassambara

language: en

Publisher: STHDA

Release Date: 2018-03-10


DOWNLOAD





Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.