Malware Data Science
Download Malware Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Malware Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Malware Data Science
Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.
Data Science for Malware Analysis
Author: Shane Molinari
language: en
Publisher: Packt Publishing Ltd
Release Date: 2023-12-15
Unlock the secrets of malware data science with cutting-edge techniques, AI-driven analysis, and international compliance standards to stay ahead of the ever-evolving cyber threat landscape Key Features Get introduced to three primary AI tactics used in malware and detection Leverage data science tools to combat critical cyber threats Understand regulatory requirements for using AI in cyber threat management Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's world full of online threats, the complexity of harmful software presents a significant challenge for detection and analysis. This insightful guide will teach you how to apply the principles of data science to online security, acting as both an educational resource and a practical manual for everyday use. Data Science for Malware Analysis starts by explaining the nuances of malware, from its lifecycle to its technological aspects before introducing you to the capabilities of data science in malware detection by leveraging machine learning, statistical analytics, and social network analysis. As you progress through the chapters, you’ll explore the analytical methods of reverse engineering, machine language, dynamic scrutiny, and behavioral assessments of malicious software. You’ll also develop an understanding of the evolving cybersecurity compliance landscape with regulations such as GDPR and CCPA, and gain insights into the global efforts in curbing cyber threats. By the end of this book, you’ll have a firm grasp on the modern malware lifecycle and how you can employ data science within cybersecurity to ward off new and evolving threats.What you will learn Understand the science behind malware data and its management lifecycle Explore anomaly detection with signature and heuristics-based methods Analyze data to uncover relationships between data points and create a network graph Discover methods for reverse engineering and analyzing malware Use ML, advanced analytics, and data mining in malware data analysis and detection Explore practical insights and the future state of AI's use for malware data science Understand how NLP AI employs algorithms to analyze text for malware detection Who this book is for This book is for cybersecurity experts keen on adopting data-driven defense methods. Data scientists will learn how to apply their skill set to address critical security issues, and compliance officers navigating global regulations like GDPR and CCPA will gain indispensable insights. Academic researchers exploring the intersection of data science and cybersecurity, IT decision-makers overseeing organizational strategy, and tech enthusiasts eager to understand modern cybersecurity will also find plenty of useful information in this guide. A basic understanding of cybersecurity and information technology is a prerequisite.
Data Science For Cyber-security
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.