Mathematica Data Analysis
Download Mathematica Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematica Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematica Data Analysis
Author: Sergiy Suchok
language: en
Publisher: Packt Publishing Ltd
Release Date: 2015-12-24
Learn and explore the fundamentals of data analysis with power of Mathematica About This Book Use the power of Mathematica to analyze data in your applications Discover the capabilities of data classification and pattern recognition offered by Mathematica Use hundreds of algorithms for time series analysis to predict the future Who This Book Is For The book is for those who want to learn to use the power of Mathematica to analyze and process data. Perhaps you are already familiar with data analysis but have never used Mathematica, or you know Mathematica but you are new to data analysis. With the help of this book, you will be able to quickly catch up on the key points for a successful start. What You Will Learn Import data from different sources to Mathematica Link external libraries with programs written in Mathematica Classify data and partition them into clusters Recognize faces, objects, text, and barcodes Use Mathematica functions for time series analysis Use algorithms for statistical data processing Predict the result based on the observations In Detail There are many algorithms for data analysis and it's not always possible to quickly choose the best one for each case. Implementation of the algorithms takes a lot of time. With the help of Mathematica, you can quickly get a result from the use of a particular method, because this system contains almost all the known algorithms for data analysis. If you are not a programmer but you need to analyze data, this book will show you the capabilities of Mathematica when just few strings of intelligible code help to solve huge tasks from statistical issues to pattern recognition. If you're a programmer, with the help of this book, you will learn how to use the library of algorithms implemented in Mathematica in your programs, as well as how to write algorithm testing procedure. With each chapter, you'll be more immersed in the special world of Mathematica. Along with intuitive queries for data processing, we will highlight the nuances and features of this system, allowing you to build effective analysis systems. With the help of this book, you will learn how to optimize the computations by combining your libraries with the Mathematica kernel. Style and approach This book takes a step-by-step approach, accompanied by examples, so you get a better understanding of the logic of writing algorithms for data analysis in Mathematica. We provide a detailed explanation of all the nuances of the Mathematica language, no matter what your level of experience is.
Beginning Mathematica and Wolfram for Data Science
Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages. You'll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages. You'll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you'll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You'll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out. You will: Use Mathematica to explore data and describe the concepts using Wolfram language commands Create datasets, work with data frames, and create tables Import, export, analyze, and visualize data Work with the Wolfram data repository Build reports on the analysis Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering.
Statistical Computing Environments for Social Research
Author: Robert Stine
language: en
Publisher: SAGE Publications, Incorporated
Release Date: 1997
The nature of statistics has changed from classical notions of hypothesis testing toward graphical and exploratory data analysis that exploits the flexibility of interactive computing and graphical displays. With contributions from some of the leading researchers in the social sciences and statistics, Statistical Computing Environments for Social Research describes seven statistical computing environments--APL2STAT, GAUSS, Lisp-Stat, Mathematica, S, SAS/IML, and Stata--that can be used effectively in graphical and exploratory modeling. These statistical computing environments, in contrast to a standard statistical package, provide programming tools for building other statistical applications. Programmability, flexible data structures, and--in the case of some of the computing environments--graphical interfaces and object-oriented programming permit researchers to take advantage of emerging statistical methodologies. Three additional chapters, describing the Axis, R-code, and ViSta statistical packages, demonstrate how researchers have extended one of the computing environments--Lisp-Stat--to produce significant statistical applications employing graphical interfaces to statistical software. To illustrate the capabilities of the seven statistical computing environments, each contributor uses the same data set to perform three computing tasks: robust regression, bootstrap resampling, and kernel-density estimation. The same data are analyzed in the chapters on Axis, R-code, and ViSta packages. The chapters in Statistical Computing Environments for Social Research illustrate important ideas and techniques in modern data analysis and statistical computing, ideas and techniques that readers will be able to apply in the more effective analysis of their own data.