Mathematical Analysis
Download Mathematical Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Introduction to Mathematical Analysis
Author: Igor Kriz
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-07-25
The book begins at the level of an undergraduate student assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, Lebesgue integral, vector calculus and differential equations. After having built on a solid foundation of topology and linear algebra, the text later expands into more advanced topics such as complex analysis, differential forms, calculus of variations, differential geometry and even functional analysis. Overall, this text provides a unique and well-rounded introduction to the highly developed and multi-faceted subject of mathematical analysis, as understood by a mathematician today.
Real Mathematical Analysis
Author: Charles C. Pugh
language: en
Publisher: Springer Science & Business Media
Release Date: 2003-11-14
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
Mathematical Analysis
Author: Andrew Browder
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This is a textbook suitable for a year-long course in analysis at the ad vanced undergraduate or possibly beginning-graduate level. It is intended for students with a strong background in calculus and linear algebra, and a strong motivation to learn mathematics for its own sake. At this stage of their education, such students are generally given a course in abstract algebra, and a course in analysis, which give the fundamentals of these two areas, as mathematicians today conceive them. Mathematics is now a subject splintered into many specialties and sub specialties, but most of it can be placed roughly into three categories: al gebra, geometry, and analysis. In fact, almost all mathematics done today is a mixture of algebra, geometry and analysis, and some of the most in teresting results are obtained by the application of analysis to algebra, say, or geometry to analysis, in a fresh and surprising way. What then do these categories signify? Algebra is the mathematics that arises from the ancient experiences of addition and multiplication of whole numbers; it deals with the finite and discrete. Geometry is the mathematics that grows out of spatial experience; it is concerned with shape and form, and with measur ing, where algebra deals with counting.