Mathematical Physics Using Python


Mathematical Physics Using Python pdf

Download Mathematical Physics Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Physics Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Mathematical Physics Using Python


Mathematical Physics Using Python

Author: Vasilis Pagonis

language: en

Publisher:

Release Date: 2024


DOWNLOAD





"This advanced undergraduate textbook provides a practical, pedagogical lead introduction to utilizing Python for Mathematical Physics and Computational Physics courses. Both analytical and computational example problems are integrated from its start, in addition to featuring end of chapter problems, designed to help students hone their skills in mathematical physics techniques, computer programming, and in numerical analysis. It places much less emphasis on mathematical proofs, and more emphasis on how to use computers for both numerical and symbolic calculations. This book will, therefore, provide both students and instructors with a clear presentation of the typical topics covered in a Mathematical Physics course and will present an accessible and practical instruction on how to use computational techniques to solve physics problems, by using the Python programming language. Students using the textbook will solve physics problems in three different ways: (a) Using the traditional pen-and-paper methods (b) Using scientific numerical techniques with the Python packages NumPy and SciPy (c) Using the Symbolic Python packages (e.g. SymPy). The book is accompanied by a dedicated GitHub website, which will contain all sample code used in the examples. In the same website, links will be provided for the many available resources online that a student can use in order to learn about specific Python topics. A solutions manual is also available for instructors using the textbook in their course"--

Mathematical Methods using Python


Mathematical Methods using Python

Author: Vasilis Pagonis

language: en

Publisher: CRC Press

Release Date: 2024-05-14


DOWNLOAD





This advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc. An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses. Key Features: A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses Uses examples and models from physical and engineering systems, to motivate the mathematics being taught Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy).

Computational Physics


Computational Physics

Author: Rubin H. Landau

language: en

Publisher: John Wiley & Sons

Release Date: 2024-03-25


DOWNLOAD





The classic in the field for more than 25 years, now with increased emphasis on data science and new chapters on quantum computing, machine learning (AI), and general relativity Computational physics combines physics, applied mathematics, and computer science in a cutting-edge multidisciplinary approach to solving realistic physical problems. It has become integral to modern physics research because of its capacity to bridge the gap between mathematical theory and real-world system behavior. Computational Physics provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. Its philosophy is rooted in “learning by doing”, assisted by many sample programs in the popular Python programming language. The first third of the book lays the fundamentals of scientific computing, including programming basics, stable algorithms for differentiation and integration, and matrix computing. The latter two-thirds of the textbook cover more advanced topics such linear and nonlinear differential equations, chaos and fractals, Fourier analysis, nonlinear dynamics, and finite difference and finite elements methods. A particular focus in on the applications of these methods for solving realistic physical problems. Readers of the fourth edition of Computational Physics will also find: An exceptionally broad range of topics, from simple matrix manipulations to intricate computations in nonlinear dynamics A whole suite of supplementary material: Python programs, Jupyter notebooks and videos Computational Physics is ideal for students in physics, engineering, materials science, and any subjects drawing on applied physics.