Natural Language Processing With Tensorflow


Natural Language Processing With Tensorflow pdf

Download Natural Language Processing With Tensorflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Natural Language Processing With Tensorflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Natural Language Processing with TensorFlow


Natural Language Processing with TensorFlow

Author: Thushan Ganegedara

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-05-31


DOWNLOAD





Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.

Hands on Natural Language Processing with Tensorflow


Hands on Natural Language Processing with Tensorflow

Author: Michael Walker

language: en

Publisher:

Release Date: 2018-07-31


DOWNLOAD





***** BUY NOW (will soon return to 24.97 $) ***** MONEY BACK GUARANTEE BY AMAZON (See Below FAQ) ***** *** Free eBook for customers who purchase the print book from Amazon *** Are you thinking of learning more Natural Language Processing (NLP) using TensorFlow? This book is for you. It would seek to explain common terms and algorithms in an intuitive way. The authors used a progressive approach whereby we start out slowly and improve on the complexity of our solutions.This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using ̈NLP. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of Data Science and NLP. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction to Natural Language Processing What is Natural Language Processing Perspectivizing NLP: Areas of AI and Their Interdependencies Purpose of Natural Language Processing Text Manipulation Tokenization Stemming Lemmatization Normalization Accessing Text Corpora and Lexical Resources Processing Raw Text Categorizing and Tagging Words NLP Applications Text Classification Sentiment Classification Topic Modelling Question Answering Speech Recognition Machine Translation Word Representation Bag of Words One-Hot Encoding Word Vectors Representation Word2Vec and GloVe Learning to Classify Text Supervised Classification Decision Trees Naive Bayes Classifiers Maximum Entropy Classifiers Deep Learning for NLP What is Deep Learning Feed Forward Neural Networks Recurrent Neural Networks Gated Recurrent Unit Long Short Term Memory Language Processing and Python using NLTK Introduction to TensorFlow Text Classification Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: If you want to smash NLP from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK.Q: Does this book include everything I need to become a NLP expert?A: Unfortunately, no. This book is designed for readers taking their first steps in NLP and further learning will be required beyond this book to master all aspects of NLP.Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected].

Natural Language Processing with TensorFlow


Natural Language Processing with TensorFlow

Author: Thushan Ganegedara

language: en

Publisher: Packt Publishing Ltd

Release Date: 2022-07-29


DOWNLOAD





From introductory NLP tasks to Transformer models, this new edition teaches you to utilize powerful TensorFlow APIs to implement end-to-end NLP solutions driven by performant ML (Machine Learning) models Key Features • Learn to solve common NLP problems effectively with TensorFlow 2.x • Implement end-to-end data pipelines guided by the underlying ML model architecture • Use advanced LSTM techniques for complex data transformations, custom models and metrics Book Description Learning how to solve natural language processing (NLP) problems is an important skill to master due to the explosive growth of data combined with the demand for machine learning solutions in production. Natural Language Processing with TensorFlow, Second Edition, will teach you how to solve common real-world NLP problems with a variety of deep learning model architectures. The book starts by getting readers familiar with NLP and the basics of TensorFlow. Then, it gradually teaches you different facets of TensorFlow 2.x. In the following chapters, you then learn how to generate powerful word vectors, classify text, generate new text, and generate image captions, among other exciting use-cases of real-world NLP. TensorFlow has evolved to be an ecosystem that supports a machine learning workflow through ingesting and transforming data, building models, monitoring, and productionization. We will then read text directly from files and perform the required transformations through a TensorFlow data pipeline. We will also see how to use a versatile visualization tool known as TensorBoard to visualize our models. By the end of this NLP book, you will be comfortable with using TensorFlow to build deep learning models with many different architectures, and efficiently ingest data using TensorFlow Additionally, you'll be able to confidently use TensorFlow throughout your machine learning workflow. What you will learn • Learn core concepts of NLP and techniques with TensorFlow • Use state-of-the-art Transformers and how they are used to solve NLP tasks • Perform sentence classification and text generation using CNNs and RNNs • Utilize advanced models for machine translation and image caption generation • Build end-to-end data pipelines in TensorFlow • Learn interesting facts and practices related to the task at hand • Create word representations of large amounts of data for deep learning Who this book is for This book is for Python developers and programmers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required.