Network Science With Python


Network Science With Python pdf

Download Network Science With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Network Science With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Network Science with Python


Network Science with Python

Author: David Knickerbocker

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-02-28


DOWNLOAD





Discover the use of graph networks to develop a new approach to data science using theoretical and practical methods with this expert guide using Python, printed in color Key FeaturesCreate networks using data points and informationLearn to visualize and analyze networks to better understand communitiesExplore the use of network data in both - supervised and unsupervised machine learning projectsPurchase of the print or Kindle book includes a free PDF eBookBook Description Network analysis is often taught with tiny or toy data sets, leaving you with a limited scope of learning and practical usage. Network Science with Python helps you extract relevant data, draw conclusions and build networks using industry-standard – practical data sets. You'll begin by learning the basics of natural language processing, network science, and social network analysis, then move on to programmatically building and analyzing networks. You'll get a hands-on understanding of the data source, data extraction, interaction with it, and drawing insights from it. This is a hands-on book with theory grounding, specific technical, and mathematical details for future reference. As you progress, you'll learn to construct and clean networks, conduct network analysis, egocentric network analysis, community detection, and use network data with machine learning. You'll also explore network analysis concepts, from basics to an advanced level. By the end of the book, you'll be able to identify network data and use it to extract unconventional insights to comprehend the complex world around you. What you will learnExplore NLP, network science, and social network analysisApply the tech stack used for NLP, network science, and analysisExtract insights from NLP and network dataGenerate personalized NLP and network projectsAuthenticate and scrape tweets, connections, the web, and data streamsDiscover the use of network data in machine learning projectsWho this book is for Network Science with Python demonstrates how programming and social science can be combined to find new insights. Data scientists, NLP engineers, software engineers, social scientists, and data science students will find this book useful. An intermediate level of Python programming is a prerequisite. Readers from both – social science and programming backgrounds will find a new perspective and add a feather to their hat.

Network Science with Python and NetworkX Quick Start Guide


Network Science with Python and NetworkX Quick Start Guide

Author: Edward L. Platt

language: en

Publisher: Packt Publishing Ltd

Release Date: 2019-04-26


DOWNLOAD





Manipulate and analyze network data with the power of Python and NetworkX Key FeaturesUnderstand the terminology and basic concepts of network scienceLeverage the power of Python and NetworkX to represent data as a networkApply common techniques for working with network data of varying sizesBook Description NetworkX is a leading free and open source package used for network science with the Python programming language. NetworkX can track properties of individuals and relationships, find communities, analyze resilience, detect key network locations, and perform a wide range of important tasks. With the recent release of version 2, NetworkX has been updated to be more powerful and easy to use. If you’re a data scientist, engineer, or computational social scientist, this book will guide you in using the Python programming language to gain insights into real-world networks. Starting with the fundamentals, you’ll be introduced to the core concepts of network science, along with examples that use real-world data and Python code. This book will introduce you to theoretical concepts such as scale-free and small-world networks, centrality measures, and agent-based modeling. You’ll also be able to look for scale-free networks in real data and visualize a network using circular, directed, and shell layouts. By the end of this book, you’ll be able to choose appropriate network representations, use NetworkX to build and characterize networks, and uncover insights while working with real-world systems. What you will learnUse Python and NetworkX to analyze the properties of individuals and relationshipsEncode data in network nodes and edges using NetworkXManipulate, store, and summarize data in network nodes and edgesVisualize a network using circular, directed and shell layoutsFind out how simulating behavior on networks can give insights into real-world problemsUnderstand the ongoing impact of network science on society, and its ethical considerationsWho this book is for If you are a programmer or data scientist who wants to manipulate and analyze network data in Python, this book is perfect for you. Although prior knowledge of network science is not necessary, some Python programming experience will help you understand the concepts covered in the book easily.

Modern Graph Theory Algorithms with Python


Modern Graph Theory Algorithms with Python

Author: Colleen M. Farrelly

language: en

Publisher: Packt Publishing Ltd

Release Date: 2024-06-07


DOWNLOAD





Solve challenging and computationally intensive analytics problems by leveraging network science and graph algorithms Key Features Learn how to wrangle different types of datasets and analytics problems into networks Leverage graph theoretic algorithms to analyze data efficiently Apply the skills you gain to solve a variety of problems through case studies in Python Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWe are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You’ll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you’ll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you’ll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you’ll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.What you will learn Transform different data types, such as spatial data, into network formats Explore common network science tools in Python Discover how geometry impacts spreading processes on networks Implement machine learning algorithms on network data features Build and query graph databases Explore new frontiers in network science such as quantum algorithms Who this book is for If you’re a researcher or industry professional analyzing data and are curious about network science approaches to data, this book is for you. To get the most out of the book, basic knowledge of Python, including pandas and NumPy, as well as some experience working with datasets is required. This book is also ideal for anyone interested in network science and learning how graph algorithms are used to solve science and engineering problems. R programmers may also find this book helpful as many algorithms also have R implementations.