Operator Theory In Function Spaces


Operator Theory In Function Spaces pdf

Download Operator Theory In Function Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Operator Theory In Function Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Operator Theory in Function Spaces


Operator Theory in Function Spaces

Author: Kehe Zhu

language: en

Publisher: American Mathematical Soc.

Release Date: 2007


DOWNLOAD





This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.

Linear Operators in Function Spaces


Linear Operators in Function Spaces

Author: G. Arsene

language: en

Publisher: Birkhäuser

Release Date: 2012-12-06


DOWNLOAD





The Operator Theory conferences, organized by the Department of Mathematics of INCREST and the Department of Mathematics of the University of Timi~oara, are conceived as a means to promote cooperation and exchange of information between specialists in all areas of operator theory. This book comprises carefully selected papers on theory of linear operators and related fields. Original results of new research in fast developing areas are included. Several contributed papers focus on the action of linear operators in various function spaces. Recent advances in spectral theory and related topics, operators in indefinite metric spaces, dual algebras and the invariant subspace problem, operator algebras and group representations as well as applications to mathematical physics are presented. The research contacts of the Department of :viathematics of INCREST with the National Committee for Science and Technology of Romania provided means for developing the research activity in mathematics; they represent the generous framework of these meetings too. It is our pleasure to acknowledge the financial support of UNESCO which also contributed to the success of this meeting. We are indebted to Professor Israel Gohberg for including these Proceedings in the OT Series and for valuable advice in the editing process. Birkhauser Verlag was very cooperative in publishing this volume. Camelia Minculescu, Iren Nemethi and Rodica Stoenescu dealt with the difficult task of typing the whole manuscript using a Rank Xerox 860 word processor; we thank them for this exellent job.

Operator Theory in Function Spaces and Banach Lattices


Operator Theory in Function Spaces and Banach Lattices

Author: C.B. Huijsmans

language: en

Publisher: Birkhäuser

Release Date: 2012-12-06


DOWNLOAD





This volume is dedicated to A.C. Zaanen, one of the pioneers of functional analysis, and eminent expert in modern integration theory and the theory of vector lattices, on the occasion of his 80th birthday. The book opens with biographical notes, including Zaanen's curriculum vitae and list of publications. It contains a selection of original research papers which cover a broad spectrum of topics about operators and semigroups of operators on Banach lattices, analysis in function spaces and integration theory. Special attention is paid to the spectral theory of operators on Banach lattices; in particular, to the one of positive operators. Classes of integral operators arising in systems theory, optimization and best approximation problems, and evolution equations are also discussed. The book will appeal to a wide range of readers engaged in pure and applied mathematics.