Parallel Evolutionary Computations
Download Parallel Evolutionary Computations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parallel Evolutionary Computations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Parallel Evolutionary Computations
This book focuses on the aspects related to the parallelization of evolutionary computations, such as parallel genetic operators, parallel fitness evaluation, distributed genetic algorithms, and parallel hardware implementations, as well as on their impact on several applications. It offers a wide spectrum of sample works developed in leading research about parallel implementations of efficient techniques at the heart of computational intelligence.
Massively Parallel Evolutionary Computation on GPGPUs
Author: Shigeyoshi Tsutsui
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-12-05
Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened up this possibility for parallel EAs, and this is the first book dedicated to this exciting development. The three chapters of Part I are tutorials, representing a comprehensive introduction to the approach, explaining the characteristics of the hardware used, and presenting a representative project to develop a platform for automatic parallelization of evolutionary computing (EC) on GPGPUs. The 10 chapters in Part II focus on how to consider key EC approaches in the light of this advanced computational technique, in particular addressing generic local search, tabu search, genetic algorithms, differential evolution, swarm optimization, ant colony optimization, systolic genetic search, genetic programming, and multiobjective optimization. The 6 chapters in Part III present successful results from real-world problems in data mining, bioinformatics, drug discovery, crystallography, artificial chemistries, and sudoku. Although the parallelism of EAs is suited to the single-instruction multiple-data (SIMD)-based GPU, there are many issues to be resolved in design and implementation, and a key feature of the contributions is the practical engineering advice offered. This book will be of value to researchers, practitioners, and graduate students in the areas of evolutionary computation and scientific computing.
Parallel Evolutionary Computations
Author: Nadia Nedjah
language: en
Publisher: Studies in Computational Intelligence
Release Date: 2006-05-08
"Parallel Evolutionary Computation" focuses on the aspects related to the parallelization of evolutionary computations, such as parallel genetic operators, parallel fitness evaluation, distributed genetic algorithms, and parallel hardware implementations, as well as on their impact on several applications. The book is divided into four parts. The first part deals with a clear software-like and algorithmic vision on parallel evolutionary optimizations. The second part is about hardware implementations of genetic algorithms, a valuable topic which is hard to find in the present literature. The third part treats the problem of distributed evolutionary computation and presents three interesting applications wherein parallel EC new ideas are featured. Finally, the last part deals with the up-to-date field of parallel particle swarm optimization to illustrate the intrinsic similarities and potential extensions to techniques in this domain. The book offers a wide spectrum of sample works developed in leading research throughout the world about parallel implementations of efficient techniques at the heart of computational intelligence. It will be useful both for beginners and experienced researchers in the field of computational intelligence.