Profound Python
Download Profound Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Profound Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Profound Python
The book starts the Python language from the basics and then intermediate and advanced topics are covered. After functional programming is explained in detail, object-oriented programming features such as classes, inheritance, abstract classes, polymorphism are described. Data structures and collections are given for both fundamental and advanced usage. The book contains new and advanced features such as magic functions, type checking.
Profound Python Libraries
The book contains Python libraries used in many applications. Internet, Downloads, JSON, REST are covered. Utilities such as time, random, regular expressions are included. The operating systems & process are explained in detail. File system operations and Pathlib are covered. Some introductions to Big Data & Artificial Intelligence are added. CSV, Samples are explained as a preperation for data science. Visual libraries such as PIL & Matplotlib are included. Speech Recognition is covered. Finally Tk is is explained & a full sample application is supplied.
Python Reinforcement Learning Projects
Implement state-of-the-art deep reinforcement learning algorithms using Python and its powerful libraries Key FeaturesImplement Q-learning and Markov models with Python and OpenAIExplore the power of TensorFlow to build self-learning modelsEight AI projects to gain confidence in building self-trained applicationsBook Description Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. By the end of this book, you will have hands-on experience with eight reinforcement learning projects, each addressing different topics and/or algorithms. We hope these practical exercises will provide you with better intuition and insight about the field of reinforcement learning and how to apply its algorithms to various problems in real life. What you will learnTrain and evaluate neural networks built using TensorFlow for RLUse RL algorithms in Python and TensorFlow to solve CartPole balancingCreate deep reinforcement learning algorithms to play Atari gamesDeploy RL algorithms using OpenAI UniverseDevelop an agent to chat with humans Implement basic actor-critic algorithms for continuous controlApply advanced deep RL algorithms to games such as MinecraftAutogenerate an image classifier using RLWho this book is for Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.