Programming Methods In Structural Design
Download Programming Methods In Structural Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Programming Methods In Structural Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Mathematical Programming Methods in Structural Plasticity
Civil engineering structures tend to be fabricated from materials that respond elastically at normal levels of loading. Most such materials, however, would exhibit a marked and ductile inelasticity if the structure were overloaded by accident or by some improbable but naturally occuring phenomeon. Indeed, the very presence of such ductility constitutes an important safety provision for large-scale constructions where human life is at risk. In the comprehensive evaluation of safety in structural design, it is therefore unrealistic not to consider the effects of ductility. This book sets out to show that the bringing together of the theory and methods of mathematical programming with the mathematical theory of plasticity furnishes a model which has a unifying theoretical nature and is entirely representative of observed structural behaviour. The contents of the book provide a review of the relevant aspects of mathematical programming and plasticity theory, together with a detailed presentation of the most interesting and potentially useful applications in both framed and continuum structures: ultimate strength and elastoplastic deformability; shakedown and practical upper bounds on deformation measures; evolutive dynamic response; large displacements and instability; stochastic and fuzzy programming for representing uncertainty in ultimate strength calculations. Besides providing a ready fund of computational algorithms, mathematical programming invests applications in mechanics with a refined mathematical formalism, rich in fundamental theorems, which often gives addi- tional insight into known results and occasionally lead to new ones. In addition to its obvious practical utility, the educational value of the material thoroughly befits a university discipline.
Modeling, Solving and Application for Topology Optimization of Continuum Structures: ICM Method Based on Step Function
Modelling, Solving and Applications for Topology Optimization of Continuum Structures: ICM Method Based on Step Function provides an introduction to the history of structural optimization, along with a summary of the existing state-of-the-art research on topology optimization of continuum structures. It systematically introduces basic concepts and principles of ICM method, also including modeling and solutions to complex engineering problems with different constraints and boundary conditions. The book features many numerical examples that are solved by the ICM method, helping researchers and engineers solve their own problems on topology optimization. This valuable reference is ideal for researchers in structural optimization design, teachers and students in colleges and universities working, and majoring in, related engineering fields, and structural engineers. - Offers a comprehensive discussion that includes both the mathematical basis and establishment of optimization models - Centers on the application of ICM method in various situations with the introduction of easily coded software - Provides illustrations of a large number of examples to facilitate the applications of ICM method across a variety of disciplines