Programming Your Gpu With Openmp
Download Programming Your Gpu With Openmp PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Programming Your Gpu With Openmp book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Programming Your GPU with OpenMP
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. And since OpenMP is a portable API, the programs will run on almost any system. Programming Your GPU with OpenMP shares best practices for writing performance portable programs. Key features include: The most up-to-date APIs for programming GPUs with OpenMP with concepts that transfer to other approaches for GPU programming. Written in a tutorial style that embraces active learning, so that readers can make immediate use of what they learn via provided source code. Builds the OpenMP GPU Common Core to get programmers to serious production-level GPU programming as fast as possible. Additional features: A reference guide at the end of the book covering all relevant parts of OpenMP 5.2. An online repository containing source code for the example programs from the book—provided in all languages currently supported by OpenMP: C, C++, and Fortran. Tutorial videos and lecture slides.
Multicore and GPU Programming
Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today's computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. - Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA - Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance - Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems - Download source code, examples, and instructor support materials on the book's companion website
Professional CUDA C Programming
Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.