Python Advanced Guide To Artificial Intelligence
Download Python Advanced Guide To Artificial Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Advanced Guide To Artificial Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Python
Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key Features Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and more Build, deploy, and scale end-to-end deep neural network models in a production environment Book Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe Bonaccorso Mastering TensorFlow 1.x by Armando Fandango Deep Learning for Computer Vision by Rajalingappaa Shanmugamani What you will learn Explore how an ML model can be trained, optimized, and evaluated Work with Autoencoders and Generative Adversarial Networks Explore the most important Reinforcement Learning techniques Build end-to-end deep learning (CNN, RNN, and Autoencoders) models Who this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.
Python: Advanced Guide to Artificial Intelligence
Author: Giuseppe Bonaccorso
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-12-21
Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key FeaturesMaster supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and moreBuild, deploy, and scale end-to-end deep neural network models in a production environmentBook Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe BonaccorsoMastering TensorFlow 1.x by Armando FandangoDeep Learning for Computer Vision by Rajalingappaa ShanmugamaniWhat you will learnExplore how an ML model can be trained, optimized, and evaluatedWork with Autoencoders and Generative Adversarial NetworksExplore the most important Reinforcement Learning techniquesBuild end-to-end deep learning (CNN, RNN, and Autoencoders) modelsWho this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.
Machine Learning with Python
Are you fascinated by Machine Learning but it seems too complicated?Do you have some coding skills but you want to go deeper in Python and Machine Learning? If this is you, please keep reading: you are in the right place, looking at the right book. Since you are reading this you are probably aware of how important Artificial Intelligence is in these days. In your everyday life Artificial Intelligence is all around you. Every time you buy a product on Amazon, follow a new profile on Instagram, listen to a song on Spotify or reserve a room on Booking, they are learning something out of your behavior. And these are just the most visible aspects of how Machine Learning is having an impact on our lives. Everyone knows (well, almost everyone) how important Machine Learning is for the growth and success of the biggest tech companies, and many people know about the Machine Learning impact in science, medicine and statistics. Also, it is quite commonly known that Artificial Intelligence, Machine Learning, and the mastering of their most important language, Python, can offer a lot of possibilities in work and business. And you yourself are probably thinking "I surely can see that opportunity, but how can I seize it?" Well, if you kept reading so far you are on the right track to answer your question. In Machine Learning with Python you will find: Why python is the best language for Machine Learning How to bring your ideas into a computer The smartest way to approach Machine Learning How to deal with variables and data Tips and tricks for a smooth and painless journey into artificial intelligence The most common myths about Machine Learning debunked So, whether you decided to start now or to go deeper into Artificial Intelligence, Machine Learning and Python Programming, you will only have two unanswered questions right now: "what is the best way to do it? And when is the best time to start?" An easy, clear and complete guide as Machine Learning with Python is the answer to your first question, and about the second one, well, that's an easy one: the best time is NOW! Buy Machine Learning with Python now and start mastering the secrets of Artificial Intelligence.