Python Data Analytics


Python Data Analytics pdf

Download Python Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Python for Data Analysis


Python for Data Analysis

Author: Wes McKinney

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2022-08-12


DOWNLOAD





Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the Jupyter notebook and IPython shell for exploratory computing Learn basic and advanced features in NumPy Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Python for Data Analysis


Python for Data Analysis

Author: Andrew Park

language: en

Publisher: Andrew Park

Release Date: 2021-04-22


DOWNLOAD





★ 55% OFF for Bookstores! NOW at $41,97 instead of $51,97!Do you want to learn more about Data Analysis and how to master it with Python?Your Customers Will Love This Amazing Guide! Everyone talks about data today. You have probably come across the term "data" more times than you can remember in one day. Data as a concept is so wide. One thing that is true about data is that it can be used to tell a story. The story could be anything from explaining an event to predicting the future. Data is the future. Businesses, governments, organizations, criminals-everyone needs data for some reason. Entities are investing in different data approaches to help them understand their current situation, and use it to prepare for the unknown. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. With Python for Data Analysis you will learn about the main steps that are needed to correctly implement Data Analysis and the procedures to help you extract the right insights from the right data. Some of the topics that we will discuss inside include: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Pandas, Jupyter and PyTorch The 7 Python libraries that make Python one of the best choices for Data Analysis Neural Network How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! While most books focus on how to implement advanced predictive models, this book takes the time to explain the basic concepts and all the necessary steps to correctly implement Data Analysis, including Data Visualization and providing practical examples and simple coding scripts. Don't miss the opportunity to learn more about these topics. Even if you never used Data Analysis, learning it is easier than it looks, you just need the right guidance. This practical guide provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them in Python, and the most important real-world applications. Would You Like To Know More? Buy it NOW and Let Your Customers Get Addicted to This Amazing Book!

Python: Data Analytics and Visualization


Python: Data Analytics and Visualization

Author: Phuong Vo.T.H

language: en

Publisher: Packt Publishing Ltd

Release Date: 2017-03-31


DOWNLOAD





Understand, evaluate, and visualize data About This Book Learn basic steps of data analysis and how to use Python and its packages A step-by-step guide to predictive modeling including tips, tricks, and best practices Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for Python Developers who are keen to get into data analysis and wish to visualize their analyzed data in a more efficient and insightful manner. What You Will Learn Get acquainted with NumPy and use arrays and array-oriented computing in data analysis Process and analyze data using the time-series capabilities of Pandas Understand the statistical and mathematical concepts behind predictive analytics algorithms Data visualization with Matplotlib Interactive plotting with NumPy, Scipy, and MKL functions Build financial models using Monte-Carlo simulations Create directed graphs and multi-graphs Advanced visualization with D3 In Detail You will start the course with an introduction to the principles of data analysis and supported libraries, along with NumPy basics for statistics and data processing. Next, you will overview the Pandas package and use its powerful features to solve data-processing problems. Moving on, you will get a brief overview of the Matplotlib API .Next, you will learn to manipulate time and data structures, and load and store data in a file or database using Python packages. You will learn how to apply powerful packages in Python to process raw data into pure and helpful data using examples. You will also get a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or building helpful products such as recommendations and predictions using Scikit-learn. After this, you will move on to a data analytics specialization—predictive analytics. Social media and IOT have resulted in an avalanche of data. You will get started with predictive analytics using Python. You will see how to create predictive models from data. You will get balanced information on statistical and mathematical concepts, and implement them in Python using libraries such as Pandas, scikit-learn, and NumPy. You'll learn more about the best predictive modeling algorithms such as Linear Regression, Decision Tree, and Logistic Regression. Finally, you will master best practices in predictive modeling. After this, you will get all the practical guidance you need to help you on the journey to effective data visualization. Starting with a chapter on data frameworks, which explains the transformation of data into information and eventually knowledge, this path subsequently cover the complete visualization process using the most popular Python libraries with working examples This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Getting Started with Python Data Analysis, Phuong Vo.T.H &Martin Czygan Learning Predictive Analytics with Python, Ashish Kumar Mastering Python Data Visualization, Kirthi Raman Style and approach The course acts as a step-by-step guide to get you familiar with data analysis and the libraries supported by Python with the help of real-world examples and datasets. It also helps you gain practical insights into predictive modeling by implementing predictive-analytics algorithms on public datasets with Python. The course offers a wealth of practical guidance to help you on this journey to data visualization