Python Feature Engineering Cookbook
Download Python Feature Engineering Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Feature Engineering Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Python Feature Engineering Cookbook - Second Edition
Create end-to-end, reproducible feature engineering pipelines that can be deployed into production using open-source Python libraries Key Features: Learn and implement feature engineering best practices Reinforce your learning with the help of multiple hands-on recipes Build end-to-end feature engineering pipelines that are performant and reproducible Book Description: Feature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes. This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner. By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production. What You Will Learn: Impute missing data using various univariate and multivariate methods Encode categorical variables with one-hot, ordinal, and count encoding Handle highly cardinal categorical variables Transform, discretize, and scale your variables Create variables from date and time with pandas and Feature-engine Combine variables into new features Extract features from text as well as from transactional data with Featuretools Create features from time series data with tsfresh Who this book is for: This book is for machine learning and data science students and professionals, as well as software engineers working on machine learning model deployment, who want to learn more about how to transform their data and create new features to train machine learning models in a better way.
Python Feature Engineering Cookbook
Author: Soledad Galli
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-10-31
Create end-to-end, reproducible feature engineering pipelines that can be deployed into production using open-source Python libraries Key Features Learn and implement feature engineering best practices Reinforce your learning with the help of multiple hands-on recipes Build end-to-end feature engineering pipelines that are performant and reproducible Book DescriptionFeature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes. This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner. By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production.What you will learn Impute missing data using various univariate and multivariate methods Encode categorical variables with one-hot, ordinal, and count encoding Handle highly cardinal categorical variables Transform, discretize, and scale your variables Create variables from date and time with pandas and Feature-engine Combine variables into new features Extract features from text as well as from transactional data with Featuretools Create features from time series data with tsfresh Who this book is for This book is for machine learning and data science students and professionals, as well as software engineers working on machine learning model deployment, who want to learn more about how to transform their data and create new features to train machine learning models in a better way.
Python Feature Engineering Cookbook
Author: Soledad Galli
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-08-30
Leverage the power of Python to build real-world feature engineering and machine learning pipelines ready to be deployed to production Key Features Learn Craft powerful features from tabular, transactional, and time-series data Develop efficient and reproducible real-world feature engineering pipelines Optimize data transformation and save valuable time Purchase of the print or Kindle book includes a free PDF eBook Book Description Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python libraries. You’ll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data. The book explores feature extraction from complex data types such as dates, times, and text. You’ll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series. By the end, you’ll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance. What you will learn Discover multiple methods to impute missing data effectively Encode categorical variables while tackling high cardinality Find out how to properly transform, discretize, and scale your variables Automate feature extraction from date and time data Combine variables strategically to create new and powerful features Extract features from transactional data and time series Learn methods to extract meaningful features from text data Who this book is for If you're a machine learning or data science enthusiast who wants to learn more about feature engineering, data preprocessing, and how to optimize these tasks, this book is for you. If you already know the basics of feature engineering and are looking to learn more advanced methods to craft powerful features, this book will help you. You should have basic knowledge of Python programming and machine learning to get started.