Python Image Processing Cookbook


Python Image Processing Cookbook pdf

Download Python Image Processing Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Image Processing Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Python Image Processing Cookbook


Python Image Processing Cookbook

Author: Sandipan Dey

language: en

Publisher: Packt Publishing Ltd

Release Date: 2020-04-17


DOWNLOAD





Explore Keras, scikit-image, open source computer vision (OpenCV), Matplotlib, and a wide range of other Python tools and frameworks to solve real-world image processing problems Key FeaturesDiscover solutions to complex image processing tasks using Python tools such as scikit-image and KerasLearn popular concepts such as machine learning, deep learning, and neural networks for image processingExplore common and not-so-common challenges faced in image processingBook Description With the advancements in wireless devices and mobile technology, there's increasing demand for people with digital image processing skills in order to extract useful information from the ever-growing volume of images. This book provides comprehensive coverage of the relevant tools and algorithms, and guides you through analysis and visualization for image processing. With the help of over 60 cutting-edge recipes, you'll address common challenges in image processing and learn how to perform complex tasks such as object detection, image segmentation, and image reconstruction using large hybrid datasets. Dedicated sections will also take you through implementing various image enhancement and image restoration techniques, such as cartooning, gradient blending, and sparse dictionary learning. As you advance, you'll get to grips with face morphing and image segmentation techniques. With an emphasis on practical solutions, this book will help you apply deep learning techniques such as transfer learning and fine-tuning to solve real-world problems. By the end of this book, you'll be proficient in utilizing the capabilities of the Python ecosystem to implement various image processing techniques effectively. What you will learnImplement supervised and unsupervised machine learning algorithms for image processingUse deep neural network models for advanced image processing tasksPerform image classification, object detection, and face recognitionApply image segmentation and registration techniques on medical images to assist doctorsUse classical image processing and deep learning methods for image restorationImplement text detection in images using Tesseract, the optical character recognition (OCR) engineUnderstand image enhancement techniques such as gradient blendingWho this book is for This book is for image processing engineers, computer vision engineers, software developers, machine learning engineers, or anyone who wants to become well-versed with image processing techniques and methods using a recipe-based approach. Although no image processing knowledge is expected, prior Python coding experience is necessary to understand key concepts covered in the book.

OpenCV 3 Computer Vision with Python Cookbook


OpenCV 3 Computer Vision with Python Cookbook

Author: Aleksei Spizhevoi

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-03-23


DOWNLOAD





OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...

Machine Learning with Python Cookbook


Machine Learning with Python Cookbook

Author: Kyle Gallatin

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2023-07-27


DOWNLOAD





This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks