Python Scripting For Computational Science
Download Python Scripting For Computational Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Scripting For Computational Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Python Scripting for Computational Science
Author: Hans Petter Langtangen
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-12-05
Numerous readers of the second edition have noti?ed me about misprints and possible improvements of the text and the associated computer codes. The resulting modi?cations have been incorporated in this new edition and its accompanying software. The major change between the second and third editions, however, is caused by the new implementation of Numerical Python, now called numpy. The new numpy package encourages a slightly di?erent syntax compared to the old Numeric implementation, which was used in the previous editions. Since Numerical Python functionality appears in a lot of places in the book, there are hence a huge number of updates to the new suggested numpy syntax, especially in Chapters 4, 9, and 10. The second edition was based on Python version 2.3, while the third edition contains updates for version 2.5. Recent Python features, such as generator expressions (Chapter 8.9.4), Ctypes for interfacing shared libraries in C (Chapter 5.2.2), the with statement (Chapter 3.1.4), and the subprocess module for running external processes (Chapter 3.1.3) have been exempli?ed to make the reader aware of new tools. Chapter 4.4.4 is new and gives a taste of symbolic mathematics in Python.
Python Scripting for Computational Science
Author: Hans Petter Langtangen
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
The primary purpose of this book is to help scientists and engineers work ing intensively with computers to become more productive, have more fun, and increase the reliability of their investigations. Scripting in the Python programming language can be a key tool for reaching these goals [27,29]. The term scripting means different things to different people. By scripting I mean developing programs of an administering nature, mostly to organize your work, using languages where the abstraction level is higher and program ming is more convenient than in Fortran, C, C++, or Java. Perl, Python, Ruby, Scheme, and Tel are examples of languages supporting such high-level programming or scripting. To some extent Matlab and similar scientific com puting environments also fall into this category, but these environments are mainly used for computing and visualization with built-in tools, while script ing aims at gluing a range of different tools for computing, visualization, data analysis, file/directory management, user interfaces, and Internet communi cation. So, although Matlab is perhaps the scripting language of choiee in computational science today, my use of the term scripting goes beyond typi cal Matlab scripts. Python stands out as the language of choice for scripting in computational science because of its very elean syntax, rieh modulariza tion features, good support for numerical computing, and rapidly growing popularity. What Scripting is About.
A Primer on Scientific Programming with Python
Author: Hans Petter Langtangen
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-03-31
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example- and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology, and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background, and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science.