Quantum Computing
Download Quantum Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantum Computing
Author: Richard Skiba
language: en
Publisher: After Midnight Publishing
Release Date: 2025-03-09
Quantum computing is revolutionizing the way we approach computation, unlocking unprecedented capabilities that challenge the limits of classical computers. This book is a guide for anyone seeking to understand the complexities of this emerging field. Whether you are a student, researcher, or technology enthusiast, this book provides a comprehensive exploration of the core concepts, algorithms, hardware, and real-world applications of quantum computing. The book begins with a solid introduction to quantum mechanics, the foundational science that makes quantum computing possible. Readers will gain an understanding of key principles such as superposition, entanglement, and quantum interference—phenomena that enable quantum computers to process vast amounts of data in parallel. The discussion then shifts to qubits, the fundamental building blocks of quantum computation, explaining their physical implementations using superconducting circuits, trapped ions, photonic systems, and other technologies. As the book progresses, it delves into the architecture of quantum computing, covering quantum logic gates, circuit design, and universal gate sets that define how quantum computers perform calculations. It explores groundbreaking quantum algorithms such as Shor’s algorithm for factoring large numbers and Grover’s algorithm for quantum search, demonstrating how quantum computing achieves exponential speedup over classical methods. A key challenge in quantum computing is error correction and noise mitigation. This book provides an in-depth analysis of quantum error correction techniques, fault-tolerant computing, and strategies for overcoming decoherence and environmental noise, making it accessible even to readers without a deep background in physics. The discussion extends beyond theory to practical implementations, examining quantum hardware developed by leading technology companies such as IBM, Google, Microsoft, IonQ, and Rigetti. It also explores the role of quantum computing in cybersecurity, highlighting quantum cryptography, post-quantum encryption, and quantum key distribution protocols that ensure secure communications. The latter sections of the book showcase real-world applications of quantum computing in fields such as artificial intelligence, drug discovery, climate modelling, financial modelling, and supply chain optimization. It also covers cloud-based quantum computing services like IBM Quantum Experience, Google Quantum AI, and Amazon Braket, providing insights into how organizations can leverage quantum computing without owning expensive quantum hardware. With an eye toward the future, Quantum Computing: Fundamental Principles of Quantum Computing Systems examines the ongoing challenges and expected advancements in the field, offering predictions on the evolution of quantum computing over the next two decades. This book is an indispensable resource for understanding one of the most exciting technological frontiers of our time.
Quantum Computing for Everyone
FOR NON-EXPERTS: Get an accessible introduction to quantum computing as a mathematician explains quantum algorithms, quantum entanglement, and more. Quantum computing is a beautiful fusion of quantum physics and computer science! Quantum computing incorporates some of the most stunning ideas from 20th-century physics into an entirely new way of thinking about computation. Here, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone comfortable with high school mathematics. A mathematician himself, Bernhardt simplifies the mathematics and provides elementary examples that illustrate both how the math works and what it means. He explains for the non-expert: • Quantum bits, or qubits—the basic unit of quantum computing • Quantum entanglement and what it means when qubits are entangled • Quantum cryptography • Classical computing topics like bits, gates, and logic • Quantum gates • Quantum algorithms and their speed • Quantum computers and how they’re built • And more! By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing.
Quantum Computing from Colossus to Qubits
The revolution is here. In breakthrough after breakthrough, pioneering physicists are unlocking a new quantum universe which provides a better representation of reality than our everyday experiences and common sense ever could. The birth of quantum computers - which, like Schrödinger's famous dead-and-alive cat, rely on entities like electrons existing in a mixture of states - is starting to turn the computing world on its head. In his fascinating study of this cutting-edge technology (first published as Computing with Quantum Cats and now featuring a new foreword), John Gribbin updates his previous views on the nature of quantum reality, arguing for a universe of many parallel worlds where 'everything is real'. Looking back to Alan Turing's work on the Enigma machine and the first electronic computer, Gribbin explains how quantum theory developed to make quantum computers work in practice as well as in principle. He takes us beyond the arena of theoretical physics to explore their practical applications - from machines which learn through 'intuition' and trial and error to unhackable laptops and smartphones. And he investigates the potential for this extraordinary science to allow communication faster than light and even teleportation, as we step into a world of infinite possibility.