R Machine Learning Projects
Download R Machine Learning Projects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Machine Learning Projects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
R Machine Learning Projects
Author: Dr. Sunil Kumar Chinnamgari
language: en
Publisher: Packt Publishing Ltd
Release Date: 2019-01-14
Master a range of machine learning domains with real-world projects using TensorFlow for R, H2O, MXNet, and more Key FeaturesMaster machine learning, deep learning, and predictive modeling concepts in R 3.5Build intelligent end-to-end projects for finance, retail, social media, and a variety of domainsImplement smart cognitive models with helpful tips and best practicesBook Description R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations. What you will learnExplore deep neural networks and various frameworks that can be used in RDevelop a joke recommendation engine to recommend jokes that match users’ tastesCreate powerful ML models with ensembles to predict employee attritionBuild autoencoders for credit card fraud detectionWork with image recognition and convolutional neural networks Make predictions for casino slot machine using reinforcement learningImplement NLP techniques for sentiment analysis and customer segmentationWho this book is for If you’re a data analyst, data scientist, or machine learning developer who wants to master machine learning concepts using R by building real-world projects, this is the book for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this book.
R Deep Learning Projects
Author: Yuxi (Hayden) Liu
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-02-22
5 real-world projects to help you master deep learning concepts Key Features Master the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more Get to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Practical projects that show you how to implement different neural networks with helpful tips, tricks, and best practices Book Description R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting. What you will learn Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Apply neural networks to perform handwritten digit recognition using MXNet Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification -Implement credit card fraud detection with Autoencoders Master reconstructing images using variational autoencoders Wade through sentiment analysis from movie reviews Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reduction Who this book is for Machine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.
Unsupervised Machine Learning Projects with R
"Unsupervised Machine Learning Projects with R will help you build your knowledge and skills by guiding you in building machine learning projects with a practical approach and using the latest technologies provided by the R language such as Rmarkdown, R-shiny, and more. The areas this course addresses include effectively exploring and preparing data in R and RStudio and training, evaluating, and improving a model's performance (if needed). You will feel comfortable and confident after learning unsupervised and supervised Machine Learning algorithms. In the first of the four sections comprising this course, we start by introducing you to concepts in Machine Learning, before then moving on to discuss projects in unsupervised Machine Learning. Next, we focus on two machine learning paradigms--K-Means Clustering and Principal Component Analysis--to grasp how they work and apply them to business Customer Segmentation (Market Segmentation Analysis). We finish the section by looking at the specific design aspects of Horizon 7 and how to approach a project, before finally looking at some example scenarios that will help you plan your own environment.All the work delivered into the R code script during the videos is available through nice html reports created by Rmarkdown."--Resource description page.