Representing Uncertain Knowledge


Representing Uncertain Knowledge pdf

Download Representing Uncertain Knowledge PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Representing Uncertain Knowledge book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Representing Uncertain Knowledge


Representing Uncertain Knowledge

Author: Paul Krause

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The representation of uncertainty is a central issue in Artificial Intelligence (AI) and is being addressed in many different ways. Each approach has its proponents, and each has had its detractors. However, there is now an in creasing move towards the belief that an eclectic approach is required to represent and reason under the many facets of uncertainty. We believe that the time is ripe for a wide ranging, yet accessible, survey of the main for malisms. In this book, we offer a broad perspective on uncertainty and approach es to managing uncertainty. Rather than provide a daunting mass of techni cal detail, we have focused on the foundations and intuitions behind the various schools. The aim has been to present in one volume an overview of the major issues and decisions to be made in representing uncertain knowl edge. We identify the central role of managing uncertainty to AI and Expert Systems, and provide a comprehensive introduction to the different aspects of uncertainty. We then describe the rationales, advantages and limitations of the major approaches that have been taken, using illustrative examples. The book ends with a review of the lessons learned and current research di rections in the field. The intended readership will include researchers and practitioners in volved in the design and implementation of Decision Support Systems, Ex pert Systems, other Knowledge-Based Systems and in Cognitive Science.

Uncertainty in Artificial Intelligence


Uncertainty in Artificial Intelligence

Author: Didier J. Dubois

language: en

Publisher: Morgan Kaufmann

Release Date: 2014-05-12


DOWNLOAD





Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference (1992) covers the papers presented at the Eighth Conference on Uncertainty in Artificial Intelligence, held at Stanford University on July 17-19, 1992. The book focuses on the processes, methodologies, technologies, and approaches involved in artificial intelligence. The selection first offers information on Relative Evidential Support (RES), modal logics for qualitative possibility and beliefs, and optimizing causal orderings for generating DAGs from data. Discussions focus on reversal, swap, and unclique operators, modal representation of possibility, and beliefs and conditionals. The text then examines structural controllability and observability in influence diagrams, lattice-based graded logic, and dynamic network models for forecasting. The manuscript takes a look at reformulating inference problems through selective conditioning, entropy and belief networks, parallelizing probabilistic inference, and a symbolic approach to reasoning with linguistic quantifiers. The text also ponders on sidestepping the triangulation problem in Bayesian net computations; exploring localization in Bayesian networks for large expert systems; and expressing relational and temporal knowledge in visual probabilistic networks. The selection is a valuable reference for researchers interested in artificial intelligence.

Artificial Intelligence


Artificial Intelligence

Author: Ela Kumar

language: en

Publisher: I. K. International Pvt Ltd

Release Date: 2013-12-30


DOWNLOAD





AI is an emerging discipline of computer science. It deals with the concepts and methodologies required for computer to perform an intelligent activity. The spectrum of computer science is very wide and it enables the computer to handle almost every activity, which human beings could. It deals with defining the basic problem from viewpoint of solving it through computer, finding out the total possibilities of solution, representing the problem from computational orientation, selecting data structures, finding the solution through searching the goal in search space dealing the real world uncertain situations etc. It also develops the techniques for learning and understanding, which make the computer able to exhibit an intelligent behavior. The list is exhaustive and is applied now a days in almost every field of technology. This book presents almost all the components of AI like problem solving, search techniques, knowledge concepts, expert system and many more in a very simple language. One of the unique features of this book is inclusion of number of solved examples; in between the chapters and also at the end of many chapters. Real life examples have been discussed to make the reader conversant with the intricate phenomenon of computer science in general, and artificial intelligence in particular. The book is primarily developed for undergraduate and postgraduate engineering students.