Stochastic Programming


Stochastic Programming pdf

Download Stochastic Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stochastic Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Introduction to Stochastic Programming


Introduction to Stochastic Programming

Author: John R. Birge

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-04-06


DOWNLOAD





This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.

Stochastic Programming


Stochastic Programming

Author: V.V. Kolbin

language: en

Publisher: Springer Science & Business Media

Release Date: 1977-06-30


DOWNLOAD





This book is devoted to the problems of stochastic (or probabilistic) programming. The author took as his basis the specialized lectures which he delivered to the graduates from the economic cybernetics department of Leningrad University beginning in 1967. Since 1971 the author has delivered a specialized course on Stochastic Programming to the gradu ates from the faculty of applied mathematics/management processes at Leningrad University. The present monograph consists of seven chapters. In Chapter I, which is of an introductory character, consideration is given to the problems of uncertainty and probability, used for modelling complicated systems. Fundamental indications for the classification of stochastic pro gramming problems are given. Chapter II is devoted to the analysis of various models of chance-constrained stochastic programming problems. Examples of technological and applied economic problems of management with chance-constraints are given. In Chapter III two-stage stochastic programming problems are investigated, various models are given, and these models are qualitatively analyzed. In the conclusion of the chapter consideration is given to: the transport problem with random data, the problem of the determination of production volume, and the problem of planning the flights of aircraft as two-stage stochastic programming problems. Multi-stage stochastic programming problems are investigated in Chapter IV. The dependencies between prior and posterior decision rules and decision distributions are given. Dual problems are investigated.

Stochastic Linear Programming


Stochastic Linear Programming

Author: Peter Kall

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-07-25


DOWNLOAD





Peter Kall and János Mayer are distinguished scholars and professors of Operations Research and their research interest is particularly devoted to the area of stochastic optimization. Stochastic Linear Programming: Models, Theory, and Computation is a definitive presentation and discussion of the theoretical properties of the models, the conceptual algorithmic approaches, and the computational issues relating to the implementation of these methods to solve problems that are stochastic in nature. The application area of stochastic programming includes portfolio analysis, financial optimization, energy problems, random yields in manufacturing, risk analysis, etc. In this book, models in financial optimization and risk analysis are discussed as examples, including solution methods and their implementation. Stochastic programming is a fast developing area of optimization and mathematical programming. Numerous papers and conference volumes, and several monographs have been published in the area; however, the Kall and Mayer book will be particularly useful in presenting solution methods including their solid theoretical basis and their computational issues, based in many cases on implementations by the authors. The book is also suitable for advanced courses in stochastic optimization.