Subduction Zone Geodynamics


Subduction Zone Geodynamics pdf

Download Subduction Zone Geodynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Subduction Zone Geodynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Subduction Zone Geodynamics


Subduction Zone Geodynamics

Author: Serge Lallemand

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-02-11


DOWNLOAD





Subduction is a major process that plays a first-order role in the dynamics of the Earth. The sinking of cold lithosphere into the mantle is thought by many authors to be the most important source of energy for plates driving forces. It also deeply modifies the thermal and chemical structure of the mantle, producing arc volcanism and is responsible for the release of most of the seismic energy on Earth. There has been considerable achievements done during the past decades regarding the complex interactions between the various processes acting in subduction zones. This volume contains a collection of contributions that were presented in June 2007 in Montpellier (France) during a conference that gave a state of the art panorama and discussed the perspectives about "Subduction Zone Geodynamics". The papers included in this special volume offer a unique multidisciplinary picture of the recent research on subduction zones geodynamics. They are organized into five main topics: Subduction zone geodynamics, Seismic tomography and anisotropy, Great subduction zone earthquakes, Seismogenic zone characterization, Continental and ridge subduction processes. Each of the 13 papers collected in the present volume is primarily concerned with one of these topics. However, it is important to highlight that papers always treat more than one topic so that all are related lighting on different aspects of the complex and fascinating subduction zones geodynamics.

Computational Approaches to Understanding Subduction Zone Geodynamics, Surface Heat Flow, and the Metamorphic Rock Record


Computational Approaches to Understanding Subduction Zone Geodynamics, Surface Heat Flow, and the Metamorphic Rock Record

Author: Buchanan C. Kerswell

language: en

Publisher:

Release Date: 2022


DOWNLOAD





"Pressure-temperature (PT) estimates from exhumed high-pressure (HP) metamorphic rocks and global surface heat flow observations evidently encode information about subduction zone thermal structure and the nature of mechanical and chemical processing of subducted materials along the interface between converging plates. Previous work demonstrates the possibility of decoding such geodynamic information by comparing numerical geodynamic models with empirical observations of surface heat flow and the metamorphic rock record. However, ambiguous interpretations can arise from this line of inquiry with respect to thermal gradients, plate coupling, and detachment and recovery of subducted materials. This dissertation applies a variety of computational techniques to explore changes in plate interface behavior among subduction zones from large numerical and empirical datasets. First, coupling depths for 17 modern subduction zones are predicted after observing mechanical coupling in 64 numerical geodynamic simulations. Second, upper-plate surface heat flow patterns are assessed by applying two methods of interpolation to thousands of surface heat flow observations near subduction zone segments. Third, PT distributions of over one million markers traced from the previous set of 64 subduction simulations are compared with hundreds of empirical PT estimates from the rock record to assess the effects of thermo-kinematic boundary conditions on detachment and recovery of rock along the plate interface. These studies conclude the following. Mechanical coupling between plates is primarily controlled by the upper plate lithospheric thickness, with marginal responses to other thermo-kinematic boundary conditions. Upper-plate surface heat flow patterns are highly variable within and among subduction zone segments, suggesting both uniform and nonuniform subsurface thermal structure and/or geodynamics. Finally, PT distributions of recovered markers show patterns consistent with trimodal detachment (recovery) of rock from distinct depths coinciding with the continental Moho at 35-40 km, the onset of plate coupling at 80 km, and an intermediate recovery mode around 55 km. Together, this work identifies important biases in geodynamic numerical models (insufficient implementation of recovery mechanisms and/or heat generation/transfer), surface heat flow observations (poor spatial coverage and/or oversampling of specific regions), and petrologic datasets (selective sampling of metamorphic rocks amenable to petrologic modelling techniques) that, if addressed, could significantly improve the current understandings of subduction interface behavior."--Boise State University ScholarWorks.

Subduction Dynamics


Subduction Dynamics

Author: Gabriele Morra

language: en

Publisher: John Wiley & Sons

Release Date: 2015-09-23


DOWNLOAD





Subduction dynamics has been actively studied through seismology, mineral physics, and laboratory and numerical experiments. Understanding the dynamics of the subducting slab is critical to a better understanding of the primary societally relevant natural hazards emerging from our planetary interior, the megathrust earthquakes and consequent tsunamis. Subduction Dynamics is the result of a meeting that was held between August 19 and 22, 2012 on Jeju island, South Korea, where about fifty researchers from East Asia, North America and Europe met. Chapters treat diverse topics ranging from the response of the ionosphere to earthquake and tsunamis, to the origin of mid-continental volcanism thousands kilometers distant from the subduction zone, from the mysterious deep earthquakes triggered in the interior of the descending slabs, to the detailed pattern of accretionary wedges in convergent zones, from the induced mantle flow in the deep mantle, to the nature of the paradigms of earthquake occurrence, showing that all of them ultimately are due to the subduction process. Volume highlights include: Multidisciplinary research involving geology, mineral physics, geophysics and geodynamics Extremely large-scale numerical models with sliate-of-the art high performance computing facilities Overview of exceptional three-dimensional dynamic representation of the evolution of the Earth interiors and of the earthquake and subsequent tsunami dynamics Global risk assessment strategies in predicting natural disasters This volume is a valuable contribution in earth and environmental sciences that will assist with understanding the mechanisms behind plate tectonics and predicting and mitigating future natural hazards like earthquakes, volcanoes and tsunamis.