Text Analytics With Python
Download Text Analytics With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Text Analytics With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Text Analytics with Python
Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve real-world case studies leveraging the power of Python. This edition has gone through a major revamp introducing several major changes and new topics based on the recent trends in NLP. We have a dedicated chapter around Python for NLP covering fundamentals on how to work with strings and text data along with introducing the current state-of-the-art open-source frameworks in NLP. We have a dedicated chapter on feature engineering representation methods for text data including both traditional statistical models and newer deep learning based embedding models. Techniques around parsing and processing text data have also been improved with some new methods. Considering popular NLP applications, for text classification, we also cover methods for tuning and improving our models. Text Summarization has gone through a major overhaul in the context of topic models where we showcase how to build, tune and interpret topic models in the context of an interest dataset on NIPS conference papers. Similarly, we cover text similarity techniques with a real-world example of movie recommenders. Sentiment Analysis is covered in-depth with both supervised and unsupervised techniques. We also cover both machine learning and deep learning models for supervised sentiment analysis. Semantic Analysis gets its own dedicated chapter where we also showcase how you can build your own Named Entity Recognition (NER) system from scratch. To conclude things, we also have a completely new chapter on the promised of Deep Learning for NLP where we also showcase a hands-on example on deep transfer learning. While the overall structure of the book remains the same, the entire code base, modules, and chapters will be updated to the latest Python 3.x release. -- Also the key selling points • Implementations are based on Python 3.x and state-of-the-art popular open source libraries in NLP • Covers Machine Learning and Deep Learning for Advanced Text Analytics and NLP • Showcases diverse NLP applications including Classification, Clustering, Similarity Recommenders, Topic Models, Sentiment and Semantic Analysis.
Text Analytics with Python
Author: Anthony S. Williams
language: en
Publisher: Anthony S. Williams
Release Date: 2020-07-13
Text Analytics with Python Text analytics is all about obtaining relevant and useful information from some unstructured data. Text analytics techniques can be of great importance and can provide amazing help for various organizations that aim to derive some potentially valuable business insights from an amazingly large collection of text-based content like social media streams, emails or word documents. Sure, text analytics using natural language processing, machine learning, and statistical modeling can be very challenging since human language is commonly inconsistent. It contains various ambiguities mainly caused by inconsistent semantics and syntax. Fortunately, text analytics software can easily help you by transposing phrases and words contained in unstructured data into some numerical values that you later link with structured data contained in data set. It is more than apparent that major enterprises are increasingly and rapidly turning to text analytics techniques in order to improve their businesses as well as overall customer satisfaction. We are witnessing that amazing variety and volume when it comes to data generated across different feedback channels which continues to grow and expand providing various businesses with a wealth of valuable information regarding their customers. It is more than apparent that sifting through all available content would be amazingly time-consuming to be done manually. However, understanding those insights held in data is more than critical when it comes to getting an accurate view of the customer's voice. We are also witnessing the next chapter of text analytics approach since it's already developing that solid ground. It will also continue to be among other technical necessities today and into the future. In order to keep up with the future, embark on your own text analytics journey having this book by your side as your best companion. In this book ou will learn: Text analytics process How to build a corpus and analyze sentiment Named entity extraction with Groningen meaning bank corpus How to train your system Getting started with NLTK How to search syntax and tokenize sentences Automatic text summarization Stemming word and topic modeling with NLTK Using scikit-learn for text classification Part of speech tagging and POS tagging models in NLTK And much, much more... Get this book NOW and learn more about Text Analytics with Python!