The Numerical Solution Of Elliptic Equations
Download The Numerical Solution Of Elliptic Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get The Numerical Solution Of Elliptic Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Numerical Solution of Elliptic Equations
A concise survey of the current state of knowledge in 1972 about solving elliptic boundary-value eigenvalue problems with the help of a computer. This volume provides a case study in scientific computing?the art of utilizing physical intuition, mathematical theorems and algorithms, and modern computer technology to construct and explore realistic models of problems arising in the natural sciences and engineering.
Numerical Solution of Elliptic and Parabolic Partial Differential Equations with CD-ROM
Author: John Arthur Trangenstein
language: en
Publisher: Cambridge University Press
Release Date: 2013-04-18
For mathematicians and engineers interested in applying numerical methods to physical problems this book is ideal. Numerical ideas are connected to accompanying software, which is also available online. By seeing the complete description of the methods in both theory and implementation, students will more easily gain the knowledge needed to write their own application programs or develop new theory. The book contains careful development of the mathematical tools needed for analysis of the numerical methods, including elliptic regularity theory and approximation theory. Variational crimes, due to quadrature, coordinate mappings, domain approximation and boundary conditions, are analyzed. The claims are stated with full statement of the assumptions and conclusions, and use subscripted constants which can be traced back to the origination (particularly in the electronic version, which can be found on the accompanying CD-ROM).
Numerical Solution of Elliptic Differential Equations by Reduction to the Interface
Author: Boris N. Khoromskij
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
During the last decade essential progress has been achieved in the analysis and implementation of multilevel/rnultigrid and domain decomposition methods to explore a variety of real world applications. An important trend in mod ern numerical simulations is the quick improvement of computer technology that leads to the well known paradigm (see, e. g. , [78,179]): high-performance computers make it indispensable to use numerical methods of almost linear complexity in the problem size N, to maintain an adequate scaling between the computing time and improved computer facilities as N increases. In the h-version of the finite element method (FEM), the multigrid iteration real izes an O(N) solver for elliptic differential equations in a domain n c IRd d with N = O(h- ) , where h is the mesh parameter. In the boundary ele ment method (BEM) , the traditional panel clustering, fast multi-pole and wavelet based methods as well as the modern hierarchical matrix techniques are known to provide the data-sparse approximations to the arising fully populated stiffness matrices with almost linear cost O(Nr log?Nr), where 1 d Nr = O(h - ) is the number of degrees of freedom associated with the boundary. The aim of this book is to introduce a wider audience to the use of a new class of efficient numerical methods of almost linear complexity for solving elliptic partial differential equations (PDEs) based on their reduction to the interface.