Tiny Machine Learning Quickstart
Download Tiny Machine Learning Quickstart PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Tiny Machine Learning Quickstart book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Tiny Machine Learning Quickstart
Be a part of the Tiny Machine Learning (TinyML) revolution in the ever-growing world of IoT. This book examines the concepts, workflows, and tools needed to make your projects smarter, all within the Arduino platform. You’ll start by exploring Machine learning in the context of embedded, resource-constrained devices as opposed to your powerful, gigabyte-RAM computer. You’ll review the unique challenges it poses, but also the limitless possibilities it opens. Next, you’ll work through nine projects that encompass different data types (tabular, time series, audio and images) and tasks (classification and regression). Each project comes with tips and tricks to collect, load, plot and analyse each type of data. Throughout the book, you’ll apply three different approaches to TinyML: traditional algorithms (Decision Tree, Logistic Regression, SVM), Edge Impulse (a no-code online tools), and TensorFlow for Microcontrollers. Each has its strengths and weaknesses, and you will learn how to choose the most appropriate for your use case. TinyML Quickstart will provide a solid reference for all your future projects with minimal cost and effort. What You Will Learn Navigate embedded ML challenges Integrate Python with Arduino for seamless data processing Implement ML algorithms Harness the power of Tensorflow for artificial neural networks Leverage no-code tools like Edge Impulse Execute real-world projects Who This Book Is For Electronics hobbyists and developers with a basic understanding of Tensorflow, ML in Python, and Arduino-based programming looking to apply that knowledge with microcontrollers. Previous experience with C++ is helpful but not required.
Using Stable Diffusion with Python
Author: Andrew Zhu (Shudong Zhu)
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-06-03
Master AI image generation by leveraging GenAI tools and techniques such as diffusers, LoRA, textual inversion, ControlNet, and prompt design in this hands-on guide, with key images printed in color Key Features Master the art of generating stunning AI artwork with the help of expert guidance and ready-to-run Python code Get instant access to emerging extensions and open-source models Leverage the power of community-shared models and LoRA to produce high-quality images that captivate audiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionStable Diffusion is a game-changing AI tool that enables you to create stunning images with code. The author, a seasoned Microsoft applied data scientist and contributor to the Hugging Face Diffusers library, leverages his 15+ years of experience to help you master Stable Diffusion by understanding the underlying concepts and techniques. You’ll be introduced to Stable Diffusion, grasp the theory behind diffusion models, set up your environment, and generate your first image using diffusers. You'll optimize performance, leverage custom models, and integrate community-shared resources like LoRAs, textual inversion, and ControlNet to enhance your creations. Covering techniques such as face restoration, image upscaling, and image restoration, you’ll focus on unlocking prompt limitations, scheduled prompt parsing, and weighted prompts to create a fully customized and industry-level Stable Diffusion app. This book also looks into real-world applications in medical imaging, remote sensing, and photo enhancement. Finally, you'll gain insights into extracting generation data, ensuring data persistence, and leveraging AI models like BLIP for image description extraction. By the end of this book, you'll be able to use Python to generate and edit images and leverage solutions to build Stable Diffusion apps for your business and users.What you will learn Explore core concepts and applications of Stable Diffusion and set up your environment for success Refine performance, manage VRAM usage, and leverage community-driven resources like LoRAs and textual inversion Harness the power of ControlNet, IP-Adapter, and other methodologies to generate images with unprecedented control and quality Explore developments in Stable Diffusion such as video generation using AnimateDiff Write effective prompts and leverage LLMs to automate the process Discover how to train a Stable Diffusion LoRA from scratch Who this book is for If you're looking to gain control over AI image generation, particularly through the diffusion model, this book is for you. Moreover, data scientists, ML engineers, researchers, and Python application developers seeking to create AI image generation applications based on the Stable Diffusion framework can benefit from the insights provided in the book.
Machine Learning with scikit-learn Quick Start Guide
Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering. Key FeaturesBuild your first machine learning model using scikit-learnTrain supervised and unsupervised models using popular techniques such as classification, regression and clusteringUnderstand how scikit-learn can be applied to different types of machine learning problemsBook Description Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models. Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions. What you will learnLearn how to work with all scikit-learn's machine learning algorithmsInstall and set up scikit-learn to build your first machine learning modelEmploy Unsupervised Machine Learning Algorithms to cluster unlabelled data into groupsPerform classification and regression machine learningUse an effective pipeline to build a machine learning project from scratchWho this book is for This book is for aspiring machine learning developers who want to get started with scikit-learn. Intermediate knowledge of Python programming and some fundamental knowledge of linear algebra and probability will help.