Deep Reinforcement Learning With Python
Download Deep Reinforcement Learning With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Reinforcement Learning With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Reinforcement Learning with Python
Author: Sudharsan Ravichandiran
language: en
Publisher: Packt Publishing Ltd
Release Date: 2020-09-30
An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms Key FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrationsBook Description With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects. What you will learnUnderstand core RL concepts including the methodologies, math, and codeTrain an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI GymTrain an agent to play Ms Pac-Man using a Deep Q NetworkLearn policy-based, value-based, and actor-critic methodsMaster the math behind DDPG, TD3, TRPO, PPO, and many othersExplore new avenues such as the distributional RL, meta RL, and inverse RLUse Stable Baselines to train an agent to walk and play Atari gamesWho this book is for If you’re a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.
Hands-On Reinforcement Learning with Python
Author: Sudharsan Ravichandiran
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-06-28
A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.
Python Reinforcement Learning Projects
Implement state-of-the-art deep reinforcement learning algorithms using Python and its powerful libraries Key FeaturesImplement Q-learning and Markov models with Python and OpenAIExplore the power of TensorFlow to build self-learning modelsEight AI projects to gain confidence in building self-trained applicationsBook Description Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. By the end of this book, you will have hands-on experience with eight reinforcement learning projects, each addressing different topics and/or algorithms. We hope these practical exercises will provide you with better intuition and insight about the field of reinforcement learning and how to apply its algorithms to various problems in real life. What you will learnTrain and evaluate neural networks built using TensorFlow for RLUse RL algorithms in Python and TensorFlow to solve CartPole balancingCreate deep reinforcement learning algorithms to play Atari gamesDeploy RL algorithms using OpenAI UniverseDevelop an agent to chat with humans Implement basic actor-critic algorithms for continuous controlApply advanced deep RL algorithms to games such as MinecraftAutogenerate an image classifier using RLWho this book is for Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.