Practical Gradient Boosting


Practical Gradient Boosting pdf

Download Practical Gradient Boosting PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Gradient Boosting book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Practical Gradient Boosting


Practical Gradient Boosting

Author: Guillaume Saupin

language: en

Publisher: guillaume saupin

Release Date: 2022-11-10


DOWNLOAD





This book on Gradient Boosting methods is intended for students, academics, engineers, and data scientists who wish to discover in depth the functioning of this Machine Learning technique used to build decision tree ensembles. All the concepts are illustrated by examples of application code. They allow the reader to rebuild from scratch his own training library of Gradient Boosting methods. In parallel, the book presents the best practices of Data Science and provides the reader with a solid technical background to build Machine Learning models. After a presentation of the principles of Gradient Boosting citing the application cases, advantages and limitations, the reader is introduced to the details of the mathematical theory. A simple implementation is given to illustrate how it works. The reader is then armed to tackle the application and configuration of these methods. Data preparation, training, explanation of a model, management of Hyper Parameter Tuning and use of objective functions are covered in detail! The last chapters of the book extend the subject to the application of Gradient Boosting for time series, the presentation of the emblematic libraries XGBoost, CatBoost and LightGBM as well as the concept of multi-resolution models.

Hands-On Gradient Boosting with Python


Hands-On Gradient Boosting with Python

Author: Dr Adrian Devlin

language: en

Publisher: Independently Published

Release Date: 2025-12-11


DOWNLOAD





Are you curious about machine learning but feel overwhelmed by math, jargon, and complex tutorials? If words like XGBoost, LightGBM, and gradient boosting sound exciting but intimidating, this book is your friendly guide through the noise. Hands-On Gradient Boosting with Python: A Practical Introduction to XGBoost, LightGBM, and the Scikit-Learn Ecosystem is written for complete beginners and self-taught developers who want a clear, step-by-step path into modern Python machine learning-without needing a PhD or years of coding experience. You'll start with the basics of Python, scikit-learn, and tabular data, then gently build up to powerful boosting models used in real-world projects and Kaggle competitions. Every chapter walks you through code line by line, explains why each step matters, and shows you how to avoid common mistakes. Inside, you'll learn how to: Set up your Python machine learning environment with confidence Understand core concepts like decision trees, ensembles, and gradient boosting in plain English Build practical models with scikit-learn, XGBoost, and LightGBM for regression and classification Work on real-world projects such as house price prediction and credit risk scoring Tune hyperparameters, handle imbalanced data, and evaluate models with metrics like AUC, F1, and RMSE Use SHAP and LIME for model explainability so you can trust your predictions Save, load, and deploy your models so they are ready for real applications Throughout the book, you're treated like a learner-not a walking error message. Mistakes are normalized, experiments are encouraged, and every "small win" is celebrated: Clear explanations before any code Gradual progression from simple to advanced models Gentle reminders that confusion is part of learning Practical tips for debugging, improving, and reusing your work Whether you're a student, an aspiring data scientist, or a developer stepping into Python machine learning for the first time, this book becomes your supportive companion-one that makes gradient boosting feel approachable, understandable, and genuinely fun. If you're ready to stop scrolling tutorials and start building real models that actually work, open this book and begin your hands-on journey into gradient boosting with Python today.

Mastering Gradient Boosting


Mastering Gradient Boosting

Author: Dr Benjamin Neudorf

language: en

Publisher: Independently Published

Release Date: 2025-09-16


DOWNLOAD





Unlock the Power of Modern Machine Learning-No Experience Required Are you fascinated by the buzz around machine learning but feel overwhelmed by the jargon, math, or where to even start? Maybe you've seen words like CatBoost, LightGBM, or XGBoost in tutorials and forums, but every explanation seems written for experts. You're not alone-and you don't need a computer science degree to master these powerful tools. Mastering Gradient Boosting is your friendly, step-by-step guide to conquering three of today's most essential machine learning libraries. Whether you're an absolute beginner or a curious professional, this book welcomes you with open arms-demystifying complex concepts and turning technical obstacles into practical victories. What Makes This Book Different? Instead of intimidating you with formulas or skipping key steps, this book gently guides you from the basics to hands-on mastery: Zero Prerequisites: No advanced math or coding experience required. Every chapter explains terms, breaks down code, and celebrates your progress. Learn by Doing: Build real projects from scratch using Python and today's most in-demand libraries-CatBoost, LightGBM, and XGBoost. Confidence-Building Approach: Each section is designed to reduce anxiety, normalize mistakes, and transform uncertainty into "aha!" moments. Complete Practical Coverage: Install and set up your environment with ease Understand gradient boosting, decision trees, and ensemble learning Train, tune, and evaluate powerful models with clear, bite-sized code Explore real-world case studies in finance, healthcare, and customer analytics Interpret results and deploy models for real impact Key Takeaways You'll Gain: Build high-performance ML models for tabular data-even as a beginner Master model evaluation, hyperparameter tuning, and interpretability (SHAP, LIME, etc.) Develop a robust workflow you can use in Kaggle competitions, job interviews, or your own data projects Gain skills trusted by data scientists, analysts, and tech teams worldwide A Supportive Guide for Lifelong Learners Learning machine learning should be empowering-not intimidating. This book meets you where you are, encourages your curiosity, and helps you turn small wins into big breakthroughs. Each chapter ends with tips, encouragement, and next steps, making the journey enjoyable at every turn. Perfect For: Beginners, students, and career-changers Self-learners eager to build job-ready skills Anyone seeking a supportive introduction to CatBoost, LightGBM, and XGBoost Ready to unlock your potential and master the most in-demand machine learning skills? Start your journey with Mastering Gradient Boosting-and see just how far you can go.